HGNC approved symbol HGNC ID HGNC approved name Entrez gene ID UniProt AC (human)
UniProt ID (human)
Pfam domains MGI symbol MGI ID UniProt AC (mouse)
UniProt ID (mouse)
HGNC gene family tag HGNC gene family description Function Modification PMID for information on function Protein complex Target molecule Target entity Product PMID for information on target Comment Status of entry
A1CF
(details)
24086 APOBEC1 complementation factor 29974 Q9NQ94 A1CF_HUMAN RRM_1 PF00076 58-126 138-199 233-297, DND1_DSRM PF14709 447-522 A1cf 1917115 Q5YD48 A1CF_MOUSE RBM RNA binding motif (RRM) containing RNA modification RNA deamination 10781591 APOB_mRNA_editosome RNA mRNA, mC U 10781591 ASP=A1CF has three RNA-binding domains with homologies to poly(A)-binding proteins. Recombinant ASP complements recombinant APOBEC-1 to edit apoB RNA in vitro. Therefore, APOBEC-1 and ASP represent the minimal requirements for apoB mRNA editing in vitro. #
ACINU
(details)
17066 Apoptotic chromatin condensation inducer in the nucleus (Acinus) 22985 Q9UKV3 ACINU_HUMAN SAP PF02037 72-106, RSB_motif PF16294 1171-1247 Acin1 1891824 Q9JIX8 ACINU_MOUSE # # RNA modification Alternative splicing 22203037 # RNA mRNA # 22203037 Production of the proapoptotic Bcl-x(S) splice variant. New
ACTB
(details)
132 actin, beta 60 P60709 ACTB_HUMAN Actin PF00022 4-375 Actb 87904 P60710 ACTB_MOUSE # # Chromatin remodeling cofactor # 10966108 BAF, nBAF, npBAF, PBAF, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1, NuA4, NuA4-related complex chromatin # # 10966108 β-actin=ACTB and actin-related proteins appear to have weak ATPase activities, which contribute ∼1% of the total activity in the BAF remodeling complex (Zhao et al. 1998). Results of experiments using the actin monomer sequestering product latrunculin B suggest that β-actin and BAF53 are required for stimulation of the ATPase activity of the BAF complex by chromatin #
ACTL6A
(details)
24124 actin-like 6A 86 O96019 ACL6A_HUMAN Actin PF00022 10-428 Actl6a 1861453 Q9Z2N8 ACL6A_MOUSE INO80 INO80 complex subunits Chromatin remodeling cofactor # 9845365 BAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, SWI/SNF BRM-BRG1, Ino80, NuA4, NuA4-related complex, SRCAP chromatin # # 9845365 β-actin and BAF53 =ACTL6A are required for maximal ATPase activity of BRG1 and are also required with BRG1 for association of the complex with chromatin/matrix. #
ACTL6B
(details)
160 actin-like 6B 51412 O94805 ACL6B_HUMAN Actin PF00022 9-425 Actl6b 1933548 Q99MR0 ACL6B_MOUSE # # Chromatin remodeling cofactor # 11726552 BAF, nBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF BRM-BRG1 chromatin # # 11726552 Belongs to the chromatin remodeling brain-specific BAF (bBAF) complex, as such plays a role in remodeling mononucleosomes in an ATP-dependent fashion. #
ACTR3B
(details)
17256 ARP3 actin-related protein 3 homolog B (yeast) 57180 Q9P1U1 ARP3B_HUMAN Actin PF00022 5-237 Actr3b 2661120 Q641P0 ARP3B_MOUSE # # Chromatin remodeling # 10911987 # histone H2A, H3, H4 # 10911987 Act3/Arp4 can interact through the N-terminal domains of histones H3, H4, and H2A. Since Esa1 can only acetylate nucleosomal histones as part of theNuA4 complex, it has been proposed that the Act3/Arp4 subunit functions by promoting the binding of NuA4 to chromatin. #
ACTR5
(details)
14671 ARP5 actin-related protein 5 homolog (yeast) 79913 Q9H9F9 ARP5_HUMAN Actin PF00022 32-230 427-567 Actr5 1924748 Q80US4 ARP5_MOUSE INO80 INO80 complex subunits Chromatin remodeling # 19014934 Ino80 chromatin # # 19014934 hArp5 binds to chromatin as a component of the hINO80 complex in a DSB-independent manner. #
ACTR6
(details)
24025 ARP6 actin-related protein 6 homolog (yeast) 64431 Q9GZN1 ARP6_HUMAN Actin PF00022 2-394 Actr6 1914269 Q9D864 ARP6_MOUSE # # Chromatin remodeling cofactor # 11368909 SRCAP chromatin # # 11368909 The Arp6 subfamily might regulate heterochromatin formation induced by the HP1 family. #
ACTR8
(details)
14672 ARP8 actin-related protein 8 homolog (yeast) 93973 Q9H981 ARP8_HUMAN Actin PF00022 48-325 506-619 Actr8 1860775 Q8R2S9 ARP8_MOUSE INO80 INO80 complex subunits Histone modification read # 22977180 Ino80 histone # # 22977180 Arp8 and the Arp8-Arp4-actin-HSA sub-complex of INO80 strongly prefer nucleosomes and H3-H4 tetramers over H2A-H2B dimers, suggesting that Arp8 functions as a nucleosome recognition module. #
ADNP
(details)
15766 activity-dependent neuroprotector homeobox 23394 Q9H2P0 ADNP_HUMAN ADNP_N PF19627 3-755, Homeodomain PF00046 770-810 Adnp 1338758 Q9Z103 ADNP_MOUSE ZFHX Homeoboxes / ZF class Chromatin remodeling cofactor # 17878164 # chromatin # # # Identified as a member of SWI/SNF chromatin remodeling complex. UniProt: Potential transcription factor. #
AEBP2
(details)
24051 AE binding protein 2 121536 Q6ZN18 AEBP2_HUMAN Aebp2 1338038 Q9Z248 AEBP2_MOUSE # # Histone modification write cofactor Histone methylation 15225548 PRC2 DNA # # 15225548 The HMTase activity requires a minimum of three components-EZH2, EED, and SUZ12-while AEBP2 is required for optimal enzymatic activity. Using a stable SUZ12 knockdown cell line, SUZ12 knockdown results in cell growth defects, which correlate with genome-wide alteration on H3-K27 methylation as well as upregulation of a number of Hox genes. #
AICDA
(details)
13203 activation-induced cytidine deaminase 57379 Q9GZX7 AICDA_HUMAN APOBEC_N PF08210 9-177 Aicda 1342279 Q9WVE0 AICDA_MOUSE APOBEC Apolipoprotein B mRNA editing enzymes DNA modification DNA demethylation 21496894 APOB_mRNA_editosome DNA ssDNA, hmC hmU 21496894 AICDA or AID is required for OCT4 and NANOG promoter demethylation, 5mCs are first oxidized to 5hmCs by TET proteins. 5hmCs are then deaminated by AID/APOBEC deaminases into 5hmU. Finally, 5hmU can be excised by 5hmU glycosylases and repaired by the BER pathway with unmethylated cytosines #
AIRE
(details)
360 autoimmune regulator 326 O43918 AIRE_HUMAN HSR PF03172 5-102, SAND PF01342 200-239, PHD PF00628 299-340 Aire 1338803 Q9Z0E3 AIRE_MOUSE PHF Zinc fingers, PHD-type Histone modification read, TF # 18292755 # histone, DNA H3K4, H3K4me3, DNA motif # 18292755 AIRE selectively interacts with histone H3 through its first plant homeodomain (PHD) finger (AIRE–PHD1) and preferentially binds to non-methylated H3K4 (H3K4me0). Accordingly, in vivo AIRE binds to and activates promoters containing low levels of H3K4me3 in human embryonic kidney 293 cells. AIRE–PHD1 is an important member of a newly identified class of PHD fingers that specifically recognize H3K4me0, thus providing a new link between the status of histone modifications. #
ALKBH1
(details)
17911 alkB, alkylation repair homolog 1 (E. coli) 8846 Q13686 ALKB1_HUMAN 2OG-FeII_Oxy_2 PF13532 110-345 Alkbh1 2384034 P0CB42 ALKB1_MOUSE ALKB Alkylation repair homologs Histone modification # 22961808 # histone H2A # # ALKBH1 is a histone H2A dioxygenase involved in neural differentiation. #
ALKBH1
(details)
17911 Nucleic acid dioxygenase ALKBH1 (EC 1.14.11.-) (Alkylated DNA repair protein alkB homolog 1) (Alpha-ketoglutarate-dependent dioxygenase ABH1) (DNA 6mA demethylase) (DNA N6-methyl adenine demethylase ALKBH1) (EC 1.14.11.51) (DNA lyase ABH1) (EC 4.2.99.18) (DNA oxidative demethylase ALKBH1) (EC 1.14.11.33) (mRNA N(3)-methylcytidine demethylase) (EC 1.14.11.-) 8846 Q13686 ALKB1_HUMAN 2OG-FeII_Oxy_2 PF13532 110-345 Alkbh1 2384034 P0CB42 ALKB1_MOUSE ALKBH Alkylation repair homologs RNA modification, DNA modification DNA demethylation, RNA demethylation 18603530, 31188562, 18163532 # DNA, RNA m3C, m1A of mRNA C, A 31188562, 30392959, 30017583 Demethylates mRNAs containing N3-methylcytidine modification. Specifically demethylates DNA methylated on the 6th position of adenine (N6-methyladenosine) DNA. New
ALKBH4
(details)
21900 Alpha-ketoglutarate-dependent dioxygenase alkB homolog 4 (Alkylated DNA repair protein alkB homolog 4) (DNA N6-methyl adenine demethylase ALKBH4) (EC 1.14.11.51) (Lysine-specific demethylase ALKBH4) (EC 1.14.11.-) 54784 Q9NXW9 ALKB4_HUMAN Alkbh4 1919291 Q9D8F1 ALKB4_MOUSE ALKBH Alkylation repair homologs DNA modification DNA demethylation 30982744 # DNA m6A of DNA A 30982744 Preserves Polycomb silencing New
ALKBH5
(details)
25996 alkB homolog 5, RNA demethylase 54890 Q6P6C2 ALKB5_HUMAN 2OG-FeII_Oxy_2 PF13532 117-275 Alkbh5 2144489 Q3TSG4 ALKB5_MOUSE ALKBH Alkylation repair homologs RNA modification RNA demethylation 23177736 # RNA m6A of mRNA A 23177736 Regulates export and metabolism of mRNA New
ANKRD32
(details)
25408 ankyrin repeat domain 32 84250 Q9BQI6 ANR32_HUMAN RTT107_BRCT_5 PF16770 9-90, Ank_2 PF12796 811-900 Ankrd32 2145448 Q8R3P9 ANR32_MOUSE ANKRD Ankyrin repeat domain containing Histone modification read # 21423274 # histone H2AXS139 # 21423274 Table 1 in the reference (ANKRD32=BRCT repeat) #
ANP32A
(details)
13233 acidic (leucine-rich) nuclear phosphoprotein 32 family, member A 8125 P39687 AN32A_HUMAN LRR_9 PF14580 52-146 Anp32a 108447 O35381 AN32A_MOUSE ANP32 ANP32 acidic nuclear phosphoproteins Chromatin remodeling cofactor # 11163245 # chromatin # # 11163245 pp32 = ANP32A is a member of a family of leucine-rich acidic nuclear proteins ( 7 and 19). Results suggest potential roles of INHAT subunits in chromatin remodeling and transcriptional regulation; INHAT complex including pp32 inhibits the HAT activity of p300/CBP and PCAF by binding to their substrate, histones. #
ANP32B
(details)
16677 acidic (leucine-rich) nuclear phosphoprotein 32 family, member B 10541 Q92688 AN32B_HUMAN LRR_9 PF14580 21-149 Anp32b 1914878 Q9EST5 AN32B_MOUSE ANP32 ANP32 acidic nuclear phosphoproteins Histone chaperone # 20538007 # histone H3, H4 # 20538007 The LRR domain of ANP32B possesses histone chaperone activity and forms a curved structure with a parallel beta-sheet on the concave side and mostly helical elements on the convex side. Analyses revealed that the interaction of ANP32B with the core histones H3-H4 occurs on its concave side #
ANP32E
(details)
16673 acidic (leucine-rich) nuclear phosphoprotein 32 family, member E 81611 Q9BTT0 AN32E_HUMAN LRR_9 PF14580 35-146 Anp32e 1913721 P97822 AN32E_MOUSE ANP32 ANP32 acidic nuclear phosphoproteins Histone chaperone, Histone modification read # 24463511 SWR histone H2A.Z # 24463511 ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). #
APBB1
(details)
581 amyloid beta (A4) precursor protein-binding, family B, member 1 (Fe65) 322 O00213 APBB1_HUMAN WW PF00397 256-283, PID PF00640 370-507 542-664 Apbb1 107765 Q9QXJ1 APBB1_MOUSE # # Histone modification # 21403922 # histone H2AX # # Chromatin acetylation, β-amyloid precursor protein and its binding partner FE65 in DNA double strand break repair. UniProt: May act by specifically recognizing and binding histone H2AX phosphorylated on 'Tyr-142' (H2AXY142ph) at double-strand breaks (DSBs), recruiting other pro-apoptosis factors such as MAPK8/JNK1. Required for histone H4 acetylation at double-strand breaks (DSBs). #
APEX1
(details)
587 APEX nuclease (multifunctional DNA repair enzyme) 1 328 P27695 APEX1_HUMAN Exo_endo_phos PF03372 65-309 Apex1 88042 P28352 APEX1_MOUSE # # DNA modification cofactor DNA demethylation # # DNA # # # UniProt: May play a role in the epigenetic regulation of gene expression by participating in DNA demethylation. #
APOBEC1
(details)
604 apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 339 P41238 ABEC1_HUMAN APOBEC4_like PF18774 27-158 Apobec1 103298 P51908 ABEC1_MOUSE APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 APOB_mRNA_editosome DNA, RNA ssDNA, mRNA, mC U 22001110 Fig. A2 in the reference (APOBEC1 or A1 has no known mammalian DNA substrate but it has DNA deaminase activity sufficient to induce reversion mutations when overexpressed in E. coli. In addition, A1 expressed in neurons may have a protective function against HSV (Herpers simplex virus) that involves ssDNA deamination of the viral genome). #
APOBEC2
(details)
605 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 2 10930 Q9Y235 ABEC2_HUMAN APOBEC2 PF18772 47-223 Apobec2 1343178 Q9WV35 ABEC2_MOUSE APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 21496894, 22001110 # DNA, RNA ssDNA, mRNA, mC hmU 22001110, 21496894 Fig. A2 in the reference #
APOBEC3A
(details)
17343 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A 200315 P31941 ABC3A_HUMAN NAD2 PF18782 13-195 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 # DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are exogenous retroviruses ssDNA like HIV, DNA viruses or transposable elements/ endogenous retroelements e.g. LINEs, SINEs and LTR). #
APOBEC3B
(details)
17352 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B 9582 Q9UH17 ABC3B_HUMAN NAD2 PF18782 8-190 193-379 Apobec3 1933111 Q99J72 ABEC3_MOUSE APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 # DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are DNA viruses or transposable elements/ endogenous retroelements e.g. LINEs, SINEs and LTR). #
APOBEC3C
(details)
17353 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C 27350 Q9NRW3 ABC3C_HUMAN NAD2 PF18782 11-189 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 # DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are transposable elements/ endogenous retroelements e.g. LINEs, SINEs and LTR). #
APOBEC3D
(details)
17354 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D 140564 Q96AK3 ABC3D_HUMAN NAD2 PF18782 10-202 207-381 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 21835787 # DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are exogenous retroviruses ssDNA like HIV or transposable elements/ endogenous retroelements e.g. LINEs and SINEs). #
APOBEC3F
(details)
17356 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F 200316 Q8IUX4 ABC3F_HUMAN NAD2 PF18782 4-190 192-372 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 APOB_mRNA_editosome DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are exogenous retroviruses ssDNA like HIV, DNA viruses or transposable elements/ endogenous retroelements e.g. LINEs, SINEs and LTR). #
APOBEC3G
(details)
17357 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G 60489 Q9HC16 ABC3G_HUMAN NAD2 PF18782 8-190 200-381 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 APOB_mRNA_editosome DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are exogenous retroviruses ssDNA like HIV, DNA viruses or transposable elements/ endogenous retroelements e.g. SINEs and LTR). #
APOBEC3H
(details)
24100 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3H 164668 Q6NTF7 ABC3H_HUMAN APOBEC3 PF18771 25-157 # # # # APOBEC Apolipoprotein B mRNA editing enzymes DNA modification, RNA modification DNA demethylation, mRNA editing 22001110 APOB_mRNA_editosome DNA, RNA ssDNA, mRNA, mC dhU 22001110 Fig. A2 in the reference (Targets are exogenous retroviruses ssDNA like HIV or transposable elements/ endogenous retroelements e.g. LINEs, SINEs and LTR). #
ARID1A
(details)
11110 AT rich interactive domain 1A (SWI-like) 8289 O14497 ARI1A_HUMAN ARID PF01388 1018-1104, BAF250_C PF12031 1970-2222 Arid1a 1935147 A2BH40 ARI1A_MOUSE ARID # Chromatin remodeling cofactor # 18448678 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, WINAC, bBAF, SWI/SNF BRM-BRG1 DNA DNA motif # 18448678 BAF250a=ARID1A mediated chromatin remodeling plays a critical role in maintaining a particular chromatin configuration of its target genes that is essential for ES pluripotency and mesoderm formation. #
ARID1B
(details)
18040 AT rich interactive domain 1B (SWI1-like) 57492 Q8NFD5 ARI1B_HUMAN ARID PF01388 1137-1223, BAF250_C PF12031 2006-2266 Arid1b 1926129 # # ARID # Histone modification write Histone ubiquitination 20086098 BAF, nBAF, npBAF, PBAF, SWI/SNF-like_EPAFa, SWI/SNF-like EPAFB, SWI/SNF BRM-BRG1 histone, DNA H2BK120, DNA motif # 20086098 The characteristic member of human SWI/SNF-A is BAF250/ARID1, of which there are two isoforms, BAF250a/ARID1a and BAF250b/ARID1b. The immunopurified BAF250b E3 ubiquitin ligase was found to target histone H2B at lysine 120 for monoubiquitination in vitro. #
ARID2
(details)
18037 AT rich interactive domain 2 (ARID, RFX-like) 196528 Q68CP9 ARID2_HUMAN ARID PF01388 17-101, RFX_DNA_binding PF02257 524-602 Arid2 1924294 # # ARID # Chromatin remodeling cofactor # 15640446 PBAF DNA DNA motif # 15640446 Extends the role of ARID-containing subunits as components of SWI/SNF-related chromatin-remodeling complexes. Analysis of ARID2 in the DNA pull-down assay (Figure 4) indicates that it binds DNA without sequence specificity, like all other known ARID-containing components of SWI/SNF-related complexes. #
ARID4A
(details)
9885 AT rich interactive domain 4A (RBP1-like) 5926 P29374 ARI4A_HUMAN RBB1NT PF08169 171-268, ARID PF01388 311-397, Tudor-knot PF11717 577-631 Arid4a 2444354 # # ARID # Histone modification write cofactor Histone acetylation 15640446 mSin3A DNA DNA motif # 15640446 ARID4 subfamily DNA-binding activity is represented here by RBP1 (ARID4A). Amino acid identity within the ARID consensus is 75% between RBP1 (ARID4A) and RBP1L1 (ARID4B), the only other member of this class. Both RBP1 and RBP1L1/SAP180 have been found in association with the mSIN3-histone deacetylase complex. #
ARID4B
(details)
15550 AT rich interactive domain 4B (RBP1-like) 51742 Q4LE39 ARI4B_HUMAN RBB1NT PF08169 169-263, ARID PF01388 308-394, Tudor-knot PF11717 572-626 Arid4b 2137512 A2CG63 ARI4B_MOUSE ARID # Histone modification write cofactor Histone acetylation 15640446 mSin3A DNA DNA motif # 15640446 ARID4 subfamily DNA-binding activity is represented here by RBP1 (ARID4A). Amino acid identity within the ARID consensus is 75% between RBP1 (ARID4A) and RBP1L1 (ARID4B), the only other member of this class. Both RBP1 and RBP1L1/SAP180 have been found in association with the mSIN3-histone deacetylase complex. #
ARNTL
(details)
701 aryl hydrocarbon receptor nuclear translocator-like 406 O00327 BMAL1_HUMAN HLH PF00010 74-126, PAS PF00989 149-254, PAS_11 PF14598 339-442 Arntl 1096381 Q9WTL8 BMAL1_MOUSE bHLH Basic helix-loop-helix proteins Histone modification write cofactor, TF TF activator 14645221, 24395244 # histone # # 14645221, 24395244 The coincidence of a rhythm in histone H3 and histone H4 acetylation on the proximal E-box of hPer1 with transcriptional activation of per1 and per2 is consistent with the heterodimeric complexes of CLOCK, NPAS2 and BMAL1 = ARNTL recruiting a histone acetyltransferase (HAT)-containing transcriptional co-activation complex to achieve maximal target gene activation; CLOCK:BMAL1 functions like pioneer transcription factors and regulates the DNA accessibility of other transcription factors. #
ARRB1
(details)
711 arrestin, beta 1 408 P49407 ARRB1_HUMAN Arrestin_N PF00339 19-173, Arrestin_C PF02752 193-355 Arrb1 99473 Q8BWG8 ARRB1_MOUSE # # Histone modification # 17618287, 16325578 # histone # # # Recruits acetylase p300. Regulates histone acetylation and gene transcription. UniProt: Functions in regulating agonist-mediated G-protein coupled receptor (GPCR) signaling by mediating both receptor desensitization and resensitization processes. #
ASF1A
(details)
20995 anti-silencing function 1A histone chaperone 25842 Q9Y294 ASF1A_HUMAN ASF1_hist_chap PF04729 1-154 Asf1a 1913653 Q9CQE6 ASF1A_MOUSE # # Histone chaperone # 10759893 # histone H3, H4 # 10759893 CIA=ASF1A binds to histones H3/H4 in vitro, and the interacting region of histone H3 is located in the C-terminal helices. Human CIA, whose yeast homologue ASF1 is an anti-silencing factor, possesses histone chaperone activity #
ASF1B
(details)
20996 anti-silencing function 1B histone chaperone 55723 Q9NVP2 ASF1B_HUMAN ASF1_hist_chap PF04729 1-154 Asf1b 1914179 Q9DAP7 ASF1B_MOUSE # # Histone chaperone # 12842904 # histone H3, H4 # 12842904 hCIA-II=ASF1B interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis. #
ASH1L
(details)
19088 ash1 (absent, small, or homeotic)-like (Drosophila) 55870 Q9NR48 ASH1L_HUMAN AWS PF17907 2105-2142, SET PF00856 2156-2261, Bromodomain PF00439 2462-2533, PHD_5 PF20826 2586-2628, BAH PF01426 2662-2798 Ash1l 2183158 Q99MY8 ASH1L_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 21239497 # histone H3K36 H3K36me 21239497 Human ASH1L specifically methylates histone H3 Lys-36. Implicates that there may be a regulatory mechanism of ASH1L histone methyltransferases. #
ASH2L
(details)
744 ash2 (absent, small, or homeotic)-like (Drosophila) 9070 Q9UBL3 ASH2L_HUMAN PHD_ash2p_like PF21257 105-159, ASH2L-like_WH PF21198 161-266, SPRY PF00622 421-494 Ash2l 1344416 Q91X20 ASH2L_MOUSE PHF Zinc fingers, PHD-type Histone modification write cofactor Histone methylation 21285357 COMPASS, Menin-associated_HMT, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7, COMPASS-like MLL3,4 histone # # 21285357 The oncoprotein Ash2L is a component of the mixed lineage leukemia (MLL) family members 1–4, Setd1A, and Setd1B mammalian histone H3K4 methyltransferase complexes and is essential to maintain global trimethylation of histone H3K4. #
ASXL1
(details)
18318 additional sex combs like transcriptional regulator 1 171023 Q8IXJ9 ASXL1_HUMAN HARE-HTH PF05066 11-82, ASXH PF13919 244-363, PHD_3 PF13922 1502-1539 Asxl1 2684063 P59598 ASXL1_MOUSE # # Histone modification erase, Polycomb group (PcG) protein Histone deubiquitination 20436459 PR-DUB histone H2AK119 H2AK119ub1 20436459 Reconstituted recombinant Drosophila and human PR-DUB=ASXL1 complexes remove monoubiquitin from H2A but not from H2B in nucleosomes. #
ASXL2
(details)
23805 additional sex combs like transcriptional regulator 2 55252 Q76L83 ASXL2_HUMAN HARE-HTH PF05066 11-84, ASXH PF13919 266-381, PHD_3 PF13922 1376-1433 Asxl2 1922552 Q8BZ32 ASXL2_MOUSE # # Histone modification read # 21047783 # histone H3K4, H3K9 # 21047783 ASXL2 occupies the aP2 promoter together with histone-lysine N-methyltransferase MLL1 and Lys-9-acetylated and Lys-4-methylated H3 histones. Microarray analysis demonstrated that ASXL1 represses, whereas ASXL2 increases, the expression of adipogenic genes. #
ASXL3
(details)
29357 additional sex combs like transcriptional regulator 3 80816 Q9C0F0 ASXL3_HUMAN HARE-HTH PF05066 11-82, ASXH PF13919 241-361, PHD_3 PF13922 2204-2246 Asxl3 2685175 Q8C4A5 ASXL3_MOUSE # # Scaffold protein, Polycomb group (PcG) protein # 23736028 # histone # # 23736028 ASXL family members are epigenetic scaffolding proteins that assemble epigenetic regulators and transcription factors to specific genomic loci with histone modifications, contain PHD domain. #
ATAD2
(details)
30123 ATPase family, AAA domain containing 2 29028 Q6PL18 ATAD2_HUMAN AAA PF00004 462-597, AAA_lid_3 PF17862 624-660, Bromodomain PF00439 1002-1066 Atad2 1917722 Q8CDM1 ATAD2_MOUSE AATP ATPases / AAA-type Chromatin remodeling # 17998543 # chromatin # # 17998543 Although ANCCA=ATAD2 may not be critical for ERα recruitment to its target genes, it plays an important role in the recruitment or assembly of ERα–CBP complex at the chromatin and hence the histone modifications mediated by the complex. #
ATAD2B
(details)
29230 ATPase family, AAA domain containing 2B 54454 Q9ULI0 ATD2B_HUMAN AAA PF00004 437-571, AAA_lid_3 PF17862 598-633, Bromodomain PF00439 975-1041 Atad2b 2444798 # # AATP ATPases / AAA-type Histone modification read # 15308210 # histone H1.4, H2A, H2B, H3 and H4 # 15308210 Binds acetylated lysine residues in histone H1.4, H2A, H2B, H3 and H4 (in vitro). #
ATF2
(details)
784 activating transcription factor 2 1386 P15336 ATF2_HUMAN bZIP_1 PF00170 354-411 Atf2 109349 P16951 ATF2_MOUSE bZIP Basic leucine zipper proteins Histone modification write, TF Histone acetylation, TF activator 10821277 # histone, DNA H2B, H4, DNA motif # 10821277 ATF-2 is a histone acetyltransferase (HAT), which specifically acetylates histones H2B and H4 in vitro, exhibits histone acetyltransferase (HAT) activity. #
ATF7IP
(details)
20092 activating transcription factor 7 interacting protein 55729 Q6VMQ6 MCAF1_HUMAN ATF7IP_BD PF16788 570-783, fn3_4 PF16794 1160-1259 Atf7ip 1858965 Q7TT18 MCAF1_MOUSE # # Histone modification write cofactor Histone methylation 14536086 # histone # # 14536086 Promoter H3-K9 trimethylation is the cause of transcriptional repression and that mAM/hAM facilitates conversion of H3-K9 dimethyl to trimethyl by ESET/SETDB1. #
ATM
(details)
795 ATM serine/threonine kinase 472 Q13315 ATM_HUMAN TAN PF11640 2-128, FAT PF02259 2089-2487, PI3_PI4_kinase PF00454 2713-2963, FATC PF02260 3026-3056 Atm 107202 Q62388 ATM_MOUSE # # Histone modification write Histone phosphorylation 19261749 # histone H2AXS139 # 19261749 Damage-induced ATM/ATR phosphorylation on S139 of histone H2AX directly recruits MDC1 through MDC1’s BRCT domains. MDC1 itself is a substrate of ATM/ATR. #
ATN1
(details)
3033 atrophin 1 1822 P54259 ATN1_HUMAN Atrophin-1 PF03154 1-271 407-1190 Atn1 104725 O35126 ATN1_MOUSE # # Histone modification erase cofactor # 10973986 # histone # # 10973986 When cotransfected into Neuro-2a cells, atrophin-1 and ETO/MTG8 colocalize. #
ATR
(details)
882 ATR serine/threonine kinase 545 Q13535 ATR_HUMAN UME PF08064 1125-1221, FAT PF02259 1770-2090, PI3_PI4_kinase PF00454 2322-2567, FATC PF02260 2613-2644 Atr 108028 Q9JKK8 ATR_MOUSE # # Histone modification write Histone phosphorylation 11673449 # histone H2AX # 11673449 While H2AX phosphorylation requires ATR, this phosphorylation event is independent of Hus1. Thus, the phosphorylated H2AX may function upstream of Hus1 in the transduction of DNA damage. #
ATRX
(details)
886 alpha thalassemia/mental retardation syndrome X-linked 546 P46100 ATRX_HUMAN ADD_ATRX PF17981 162-213, SNF2-rel_dom PF00176 1563-1888, Helicase_C PF00271 2022-2155 Atrx 103067 Q61687 ATRX_MOUSE # # Chromatin remodeling # 9499421 # histone H3K9me2, H3K9me3, H3K4 # 9499421, 21666677 The characteristics of the helicase domains make the XNP protein a new member of the SNF2/SWI DNA helicase family. XNP could regulate gene expression by direct interaction with heterochromatin-associated proteins.A yeast two-hybrid analysis using XNP and several human heterochromatin-associated proteins showed a specific interaction between the XNP and the EZH2 proteins. #
ATXN7
(details)
10560 ataxin 7 6314 O15265 ATX7_HUMAN SCA7 PF08313 332-395 Atxn7 2179277 Q8R4I1 ATX7_MOUSE ATXN Ataxins Histone modification write cofactor Histone acetylation 16494529 SAGA histone # # 16494529 Ataxin-7 (ATXN7) is a subunit of the GCN5 histone acetyltransferase–containing coactivator complexes TFTC/STAGA. TFTC/STAGA complexes purified from SCA7 mice have normal TRRAP, GCN5, TAF12, and SPT3 levels and that their histone or nucleosomal acetylation activities are unaffected. #
ATXN7L3
(details)
25416 ataxin 7-like 3 56970 Q14CW9 AT7L3_HUMAN Sgf11 PF08209 81-112, SCA7 PF08313 207-237 Atxn7l3 3036270 A2AWT3 AT7L3_MOUSE # # Histone modification erase cofactor Histone deubiquitination 18206972 SAGA histone # # 18206972 ATXN7L3, USP22, and ENY2 are the human orthologs of yeast Sgf11, Ubp8, and Sus1, respectively, and they are integral components of TFTC/STAGA complex. These three proteins together form a module of the TFTC/STAGA complex, which specifically removes the ubiquitin moiety from monoubiquitinated histones H2A and H2B. #
AURKA
(details)
11393 aurora kinase A 6790 O14965 AURKA_HUMAN Pkinase PF00069 133-383 Aurka 894678 P97477 AURKA_MOUSE PPP1R Serine/threonine phosphatases / Protein phosphatase 1, regulatory subunits Histone modification write Histone phosphorylation 12576638 # histone H3 H3S10ph 12576638 Xenopus Aurora-A = AURKA, pEg2, phosphorylate specifically H3 at Serine10 in vitro. #
AURKB
(details)
11390 aurora kinase B 9212 Q96GD4 AURKB_HUMAN Pkinase PF00069 77-327 Aurkb 107168 O70126 AURKB_MOUSE PPP1R Serine/threonine phosphatases / Protein phosphatase 1, regulatory subunits Histone modification write Histone phosphorylation 11856369 # histone H3S10, H3S28 # 11856369 Aurora-B=AURKB directly phosphorylated H3, not only at Ser10 but also at Ser28. #
AURKC
(details)
11391 aurora kinase C 6795 Q9UQB9 AURKC_HUMAN Pkinase PF00069 43-293 Aurkc 1321119 O88445 AURKC_MOUSE # # Histone modification write Histone phosphorylation 15499654 # histone H3S10, H3S28 # 15499654 Aurora-C=AURKC, like Aurora-B kinase, is a chromosomal passenger protein localizing first to centromeres and then to the midzone of mitotic cells. Aurora-C transcript is expressed at a moderate level albeit about an order of magnitude lower than Aurora-B transcript in diploid human fibroblasts. #
BABAM1
(details)
25008 BRISC and BRCA1 A complex member 1 29086 Q9NWV8 BABA1_HUMAN Babam1 1915501 Q3UI43 BABA1_MOUSE # # Histone modification erase cofactor Histone deubiquitination 19261746 BRISC, BRCA1-A histone # # 19261746 MERIT40 (Mediator of Rap80 Interactions and Targeting 40 kD)/(C19orf62) is a Rap80-associated protein. MERIT40 is required for Rap80-associated lysine63–ubiquitin DUB activity, a critical component of BRCA1–Rap80 G2 checkpoint and viability responses to ionizing radiation. Thus, MERIT40 represents a novel factor that links BRCA1–Rap80 complex integrity, DSB recognition, and ubiquitin chain hydrolytic activities to the DNA damage response. #
BAHD1
(details)
29153 bromo adjacent homology domain containing 1 22893 Q8TBE0 BAHD1_HUMAN BAH PF01426 624-777 Bahd1 2139371 Q497V6 BAHD1_MOUSE # # Chromatin remodeling # 19666599 # histone H3K27me3 # 19666599 Two-hybrid screen suggest that BAHD1 could link chromatin condensation activities to DNA-binding transcription factors. The BAH domain does not bind H3K27me3 in vitro but is required for BAHD1 colocalization with H3K27me3 in vivo. #
BANP
(details)
13450 BTG3 associated nuclear protein 54971 Q8N9N5 BANP_HUMAN BEN PF10523 251-319 Banp 1889023 Q8VBU8 BANP_MOUSE BEND BEN domain containing Histone modification write Histone acetylation 16166625 # histone H3K9, H4K8 # 16166625 SMAR1 (=BANP) directs the histone modifications at a distance. Overexpression of SMAR1 deacetylates the histones in the probe II and III region and depletion of SMAR1 increases acetylation in this region. Possibly SMAR1 controls the histone acetylation status at a distance. #
BAP1
(details)
950 BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase) 8314 Q92560 BAP1_HUMAN Peptidase_C12 PF01088 5-214, UCH_C PF18031 643-688 Bap1 1206586 Q99PU7 BAP1_MOUSE # # Histone modification erase, Polycomb group (PcG) protein Histone deubiquitination 20436459 PR-DUB histone H2AK119ub1 H2AK119 19815555, 19188440, 20436459 The Polycomb group proteins BAP1 and ASX form a conserved complex in vivo and in vitro. #
BARD1
(details)
952 BRCA1 associated RING domain 1 580 Q99728 BARD1_HUMAN zf-RING_6 PF14835 42-107, Ank_2 PF12796 428-523, BRCT PF00533 569-643 Bard1 1328361 O70445 BARD1_MOUSE ANKRD Ankyrin repeat domain containing Histone modification write Histone ubiquitination 19916563 BRCC, BRCA1-A histone H2AX, H2A, H2B, H3, H4 H2AXub, H2Aub, H2Bub, H3ub, H4ub 19916563, 12485996 BARD1, like CstF-50, also interacts with RNA polymerase II. BARD1-mediated inhibition of polyadenylation may prevent inappropriate RNA processing during transcription, #
BAZ1A
(details)
960 bromodomain adjacent to zinc finger domain, 1A 11177 Q9NRL2 BAZ1A_HUMAN WAC_Acf1_DNA_bd PF10537 24-123, DDT PF02791 423-486, WHIM1 PF15612 592-633, WSD PF15613 802-926, PHD PF00628 1151-1195, Bromodomain PF00439 1439-1517 Baz1a 1309478 O88379 BAZ1A_MOUSE PHF Zinc fingers, PHD-type Histone chaperone # 14759371 ACF, CHRAC histone # # 14759371 ACF1-ISWI complex (ATP-dependent chromatin assembly and remodeling factor [ACF]) associates with histone-fold proteins (CHRAC-15 and CHRAC-17 in the human chromatin accessibility complex [CHRAC]). These histone-fold proteins facilitate ATP-dependent nucleosome sliding by ACF. Direct interaction of the CHRAC-15/17 complex with the ACF1 subunit is essential for this process. #
BAZ1B
(details)
961 bromodomain adjacent to zinc finger domain, 1B 9031 Q9UIG0 BAZ1B_HUMAN WAC_Acf1_DNA_bd PF10537 22-121, WHIM1 PF15612 726-762, WSD PF15613 899-1026, PHD PF00628 1187-1231, Bromodomain PF00439 1348-1427 Baz1b 1353499 Q9Z277 BAZ1B_MOUSE PHF Zinc fingers, PHD-type Histone modification write Histone phosphorylation 19092802 B-WICH, WINAC histone H2AXT142, H3 H2AXY142ph 19092802 WSTF=BAZ1B phosphorylates Tyr 142 of H2A.X, and WSTF activity has an important role in regulating several events that are critical for the DNA damage response. #
BAZ2A
(details)
962 bromodomain adjacent to zinc finger domain, 2A 11176 Q9UIF9 BAZ2A_HUMAN MBD PF01429 550-619, DDT PF02791 850-911, WHIM1 PF15612 951-993, WSD PF15613 1111-1788, PHD PF00628 1679-1723, Bromodomain PF00439 1803-1882 Baz2a 2151152 Q91YE5 BAZ2A_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling, Histone modification erase Histone deacetylation 11532953 NoRC histone, DNA H4K16ac, DNA motif H4K5, H4K8, H4K12 11532953 TIP5=BAZ2A is a member of a family of chromatin remodeling factors. Fig. 1 in the reference. #
BAZ2B
(details)
963 bromodomain adjacent to zinc finger domain, 2B 29994 Q9UIF8 BAZ2B_HUMAN MBD PF01429 743-811, DDT PF02791 1088-1150, domain PF15612 1193-1227, WSD PF15613 1374-1410, PHD PF00628 1934-1978, Bromodomain PF00439 2069-2151 Baz2b 2442782 # # PHF Zinc fingers, PHD-type Histone modification read # 22464331 # histone, DNA H1.4ac, H2Aac, H2Bac, H3ac, H4Kac # 22464331 Fig. 5 in the reference. #
BCOR
(details)
20893 BCL6 corepressor 54880 Q6W2J9 BCOR_HUMAN BCOR PF15808 1183-1395, Ank_2 PF12796 1467-1559, PUFD PF16553 1634-1745 Bcor 1918708 Q8CGN4 BCOR_MOUSE ANKRD Ankyrin repeat domain containing Polycomb group (PcG) protein # 16943429 BCOR # # # 16943429 The recruitment of BCOR complex PcG proteins to target genes by BCL6=BCOR in B cells suggests that BCL6 functions as a PcG-targeting factor. #
BCORL1
(details)
25657 BCL6 corepressor-like 1 63035 Q5H9F3 BCORL_HUMAN Ank_2 PF12796 1500-1591, PUFD PF16553 1668-1782 Bcorl1 2443910 A2AQH4 BCORL_MOUSE ANKRD Ankyrin repeat domain containing Histone modification erase cofactor Histone deacetylation 23523425, 17379597 BCOR histone H3K36me2 # 23523425 Homologous to BCOR; which is a component of a complex (dRAF-like complex) in companion with KDM2B, a H3K36me2 demethylase. #
BMI1
(details)
1066 BMI1 proto-oncogene, polycomb ring finger 648 P35226 BMI1_HUMAN zf-C3HC4_2 PF13923 18-56, RAWUL PF16207 162-226 Bmi1 88174 P25916 BMI1_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 15386022 PRC1 # # # 15386022 The complex, termed hPRC1L (human Polycomb repressive complex 1-like), is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. #
BPTF
(details)
3581 bromodomain PHD finger transcription factor 2186 Q12830 BPTF_HUMAN DDT PF02791 241-299, PHD PF00628 393-434 2870-2915, WSD PF15613 457-524, Bromodomain PF00439 2939-3018 Bptf 2444008 # # PHF Zinc fingers, PHD-type Chromatin remodeling # 18974875 NuRF chromatin # # 18974875 Chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. #
BRCA1
(details)
1100 breast cancer 1, early onset 672 P38398 BRCA1_HUMAN zf-C3HC4 PF00097 24-64, BRCT_assoc PF12820 361-492, BRCT PF00533 1649-1724 1758-1845 Brca1 104537 P48754 BRCA1_MOUSE RNF, PPP1R RING-type (C3HC4) zinc fingers, Serine/threonine phosphatases / Protein phosphatase 1, regulatory subunits Histone modification write cofactor, TF Histone acetylation, Histone methylation, Histone ubiquitination, TF activator, TF repressor 20820192 BRCC, BRCA1-A DNA DNA motif # 20820192 BRCA1 acts as a transcription factor, which regulates expression of many genes involved in many biological processes. DNMT1, the methylation maintenance enzyme, is a transcriptional target of BRCA1. Impaired function of BRCA1 leads to global DNA hypomethylation, loss of genomic imprinting, and an open chromatin configuration in several types of tissues examined in a BRCA1 mutant mouse model at premaligant stages. BRCA1 deficiency is also associated with significantly increased expression levels of several protooncogenes. #
BRCA2
(details)
1101 breast cancer 2, early onset 675 P51587 BRCA2_HUMAN BRCA2 PF00634 1002-1036 1216-1244 1424-1452 1521-1548 1665-1847 1842-1867 1974-2003 2054-2083, BRCA-2_helical PF09169 2476-2667, BRCA-2_OB1 PF09103 2669-2798, BRCA2DBD_OB2 PF21318 2804-2863 2969-3034, Tower PF09121 2831-2868, BRCA-2_OB3 PF09104 3053-3189, domain PF22687 3270-3382 Brca2 109337 P97929 BRCA2_MOUSE FANC Fanconi anemia, complementation groups Histone modification write Histone acetylation 9619837 BRCC histone, DNA H3, H4, ssDNA # 9619837 BRCA2 proteins acetylate primarily H3 and H4 of free histones. This suggests that HAT activity of BRCA2 may play an important role in the regulation of transcription and tumor suppressor function. #
BRCC3
(details)
24185 BRCA1/BRCA2-containing complex, subunit 3 79184 P46736 BRCC3_HUMAN JAB PF01398 8-147, BRCC36_C PF18110 226-308 Brcc3 2389572 P46737 BRCC3_MOUSE # # Histone modification erase Histone deubiquitination 19202061 BRISC, BRCA1-A histone H2AK63, H2AXK63 H2A, H2AX 19202061 Involved in DNA damage response and reverses RNF8 ubiquitination activity. Rap80-BRCC36 DUB Activity and γH2AX hydrolysis Ubiquitination. Rap80 is required for BRCA1 and BRCC36 localization to DSBs. #
BRD1
(details)
1102 bromodomain containing 1 23774 O95696 BRD1_HUMAN EPL1 PF10513 47-195, PHD_2 PF13831 229-261, zf-HC5HC2H_2 PF13832 270-389, Bromodomain PF00439 572-653, PWWP PF00855 929-1039 Brd1 1924161 # # # # Histone modification read # 21720545 MOZ/MORF histone H3K36me3, H3 # 21720545 The PWWP domains in BRPF1, BRPF2=BRD1, HDGF2, MUM1 and the N-terminal PWWP domains of WHSC1 and WHSC1L1 show weak binding affinity to histones with H3K36, K3K79 or H4K20 methylation. #
BRD2
(details)
1103 bromodomain containing 2 6046 P25440 BRD2_HUMAN Bromodomain PF00439 85-167 354-440, BET PF17035 640-704 Brd2 99495 Q7JJ13 BRD2_MOUSE # # Histone modification read # 18406326, 20495584 # histone H3K9me2, H3K14me2, H4K5ac, H4K12ac, H3K27ac # 18406326, 20495584 Brd2- and Brd3-associated chromatin is significantly enriched in H4K5, H4K12, and H3K14 acetylation and contains relatively little dimethylated H3K9. Both Brd2 and Brd3 allowed RNA polymerase II to transcribe through nucleosomes in a defined transcription system. Such activity depended on specific histone H4 modifications known to be recognized by the Brd proteins.. BRD2 is involved in recognizing acetylated lysines, including H3K27ac, and its involvement in transcriptional regulation. #
BRD3
(details)
1104 bromodomain containing 3 8019 Q15059 BRD3_HUMAN Bromodomain PF00439 46-127 315-402, BET PF17035 571-634 Brd3 1914632 Q8K2F0 BRD3_MOUSE # # Histone modification read # 18406326 # histone H3K9me2, H3K14me2, H4K5ac, H4K12ac # 18406326 Brd2- and Brd3-associated chromatin is significantly enriched in H4K5, H4K12, and H3K14 acetylation and contains relatively little dimethylated H3K9. Both Brd2 and Brd3 allowed RNA polymerase II to transcribe through nucleosomes in a defined transcription system. Such activity depended on specific histone H4 modifications known to be recognized by the Brd proteins. #
BRD4
(details)
13575 bromodomain containing 4 23476 O60885 BRD4_HUMAN Bromodomain PF00439 70-151 358-444, BET PF17035 610-672, BRD4_CDT PF17105 1324-1362 Brd4 1888520 Q9ESU6 BRD4_MOUSE # # Histone modification read # 12840145 # histone H3K9, H3K14, H4K5, H4K12 # 12840145 Brd4 avidly binds to di- and tetraacetylated histone H4 and diacetylated H3, but weakly or not at all to mono- and unacetylated H3 and H4. #
BRD7
(details)
14310 bromodomain containing 7 29117 Q9NPI1 BRD7_HUMAN Bromodomain PF00439 142-223, DUF3512 PF12024 298-483 Brd7 1349766 O88665 BRD7_MOUSE # # Histone modification read # 17498659 SWI/SNF BRM-BRG1 histone H3K9ac, H3K14ac, H3K8ac # 17498659 BRD7 bromodomain contains the typical left-handed four-helix bundle topology, and can bind with weak affinity to lysine-acetylated peptides derived from histone H3 with K9 or K14 acetylated and from histone H4 with K8, K12 or K16 acetylated. #
BRD8
(details)
19874 bromodomain containing 8 10902 Q9H0E9 BRD8_HUMAN Bromodomain PF00439 723-797 1115-1193 Brd8 1925906 Q8R3B7 BRD8_MOUSE # # Histone modification read # 14966270 SWR, NuA4, NuA4-related complex histone # # 14966270 Part of the NuA4 histone acetyltransferase complex. #
BRD9
(details)
25818 bromodomain containing 9 65980 Q9H8M2 BRD9_HUMAN Bromodomain PF00439 146-227, DUF3512 PF12024 288-462 Brd9 2145317 Q3UQU0 BRD9_MOUSE # # Histone modification read # 22464331 SWI/SNF BRM-BRG1 histone H3 # 22464331 Fig. 5 in the reference. #
BRDT
(details)
1105 bromodomain, testis-specific 676 Q58F21 BRDT_HUMAN Bromodomain PF00439 39-120 277-363, BET PF17035 509-572, BRD4_CDT PF17105 901-947 Brdt 1891374 Q91Y44 BRDT_MOUSE # # Histone modification read # 22901802 # histone H4K5ac, H4K8ac # 22901802 Biochemical and crystallographic studies confirm that occupancy of the BRDT acetyl-lysine binding pocket by JQ1 prevents recognition of acetylated histone H4. #
BRE
(details)
1106 brain and reproductive organ-expressed (TNFRSF1A modulator) 9577 Q9NXR7 BRE_HUMAN BRE PF06113 9-334 Bre 1333875 Q8K3W0 BRE_MOUSE # # Histone modification write cofactor Histone ubiquitination 14636569 BRISC, BRCC, BRCA1-A histone # # 14636569 BRCC36 and BRCC45 are novel components of the complex with sequence homology to a subunit of the signalosome and proteasome complexes. Reconstitution of a recombinant four-subunit complex containing BRCA1/BARD1/BRCC45/BRCC36 revealed an enhanced E3 ligase activity compared to that of BRCA1/BARD1 heterodimer. Furthermore, a recent report describes the ability of BRCA1-BARD1 heterodimer to autoubiquitinate BRCA1 and BARD1 and transubiquitinate the histone H2A(X). #
BRMS1
(details)
17262 breast cancer metastasis suppressor 1 25855 Q9HCU9 BRMS1_HUMAN Sds3 PF08598 60-183 Brms1 2388804 Q99N20 BRMS1_MOUSE # # Chromatin remodeling # 17000776 mSin3A chromatin # # 17000776 As a corepressor, BRMS1 can function as a more global regulator of chromatin structure, as evidenced by its ability to decrease promoter occupancy of Ac-H3 and Ac-H4 on both the cIAP2 and the Bfl-1/A1 promoters. #
BRMS1L
(details)
20512 breast cancer metastasis-suppressor 1-like 84312 Q5PSV4 BRM1L_HUMAN Sds3 PF08598 62-184 Brms1l 1196337 Q3U1T3 BRM1L_MOUSE # # Histone modification erase Histone deacetylation 15451426 mSin3A histone # # 15451426 p40-associated Sin3A/HDAC1 complex can deacetylate histone peptides in vitro. p40 can also repress transcription when tethered to the Gal-regulated promoter by the Gal-DNA binding domain. #
BRPF1
(details)
14255 bromodomain and PHD finger containing, 1 7862 P55201 BRPF1_HUMAN EPL1 PF10513 105-255, PHD_2 PF13831 288-320, zf-HC5HC2H_2 PF13832 329-448, Bromodomain PF00439 639-718, PWWP PF00855 1085-1196 Brpf1 1926033 # # # # Histone modification read # 20400950 MOZ/MORF histone H3K36me3 # 20400950 Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. #
BRPF3
(details)
14256 bromodomain and PHD finger containing, 3 27154 Q9ULD4 BRPF3_HUMAN EPL1 PF10513 48-194, PHD_2 PF13831 227-259, zf-HC5HC2H_2 PF13832 268-386, Bromodomain PF00439 599-680, PWWP PF00855 1076-1187 Brpf3 2146836 # # # # Histone modification write cofactor Histone acetylation 18794358 MOZ/MORF histone # # 18794358 Component of the MOZ/MORF complex which has a histone H3 acetyltransferase activity. BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6. #
BRWD1
(details)
12760 bromodomain and WD repeat domain containing 1 54014 Q9NSI6 BRWD1_HUMAN WD40 PF00400 182-214 217-255 262-302 360-396 457-497, Bromodomain PF00439 1166-1251 1325-1402 Brwd1 1890651 Q921C3 BRWD1_MOUSE WDR WD repeat domain containing Histone modification read # 22464331 # histone H3 # 22464331 Fig. 5 in the reference. #
BRWD3
(details)
17342 bromodomain and WD repeat domain containing 3 254065 Q6RI45 BRWD3_HUMAN WD40 PF00400 176-208 211-249 256-296 318-345 355-392 455-494 511-536, Bromodomain PF00439 1153-1231 1355-1414 Brwd3 3029414 A2AHJ4 BRWD3_MOUSE WDR WD repeat domain containing Histone modification read # 22464331 # histone H3 # 22464331 Fig. 5 in the reference. #
BUB1
(details)
1148 BUB1 mitotic checkpoint serine/threonine kinase 699 O43683 BUB1_HUMAN Mad3_BUB1_I PF08311 8-125, Pkinase PF00069 789-1007 Bub1 1100510 O08901 BUB1_MOUSE # # Histone modification write Histone phosphorylation 20929775 # histone H2AS121 H2AS121ph 20929775 Bub1 mediates histone 2A-serine 121 (H2A-S121) phosphorylation. #
C11orf30
(details)
18071 chromosome 11 open reading frame 30 56946 Q7Z589 EMSY_HUMAN ENT PF03735 16-84 2210018M11Rik 1924203 Q8BMB0 EMSY_MOUSE # # Histone modification write cofactor Histone methylation 19131338 # histone # # # Part of a complex with histone methyltranferase activity. UniProt: Regulator which is able to repress transcription, possibly via its interaction with a multiprotein chromatin remodeling complex that modifies the chromatin. #
C14orf169
(details)
20968 # # Q9H6W3 NO66_HUMAN JmjC_2 PF08007 298-427, RIOX1_C_WH PF21233 511-637 - - Q9JJF3 NO66_MOUSE # # Histone modification erase Histone methylation 23160351 # histone H3K4me3, H3K4me1, H3K36me2 H3K4me2, H3K4, H3K36me1 23160351 H3K4me3 demethylase Rbp2 (Kdm5a). In addition to NO66=C14orf169, at least four other H3K36me3 demethylases are known. #
C17orf49
(details)
28737 chromosome 17 open reading frame 49 124944 Q8IXM2 BAP18_HUMAN 0610010K14Rik 1915609 Q9DCT6 BAP18_MOUSE # # Histone modification read # 20850016 CHD8, MLL2/3, MLL4/WBP7 histone H3K4me3 # 20850016 H3K4me3 readers Sgf29, TRRAP, PHF8, GATAD1, and BAP18=C17orf49, are associated mainly with promoters (Figures S3A and S3B) and coincide with H3K4me3 marking. #
CARM1
(details)
23393 coactivator-associated arginine methyltransferase 1 10498 Q86X55 CARM1_HUMAN CARM1 PF11531 27-139, PrmA PF06325 184-257, domain PF22528 291-453 Carm1 1913208 Q9WVG6 CARM1_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 12237300 # histone H3R17 H3R17me, H3R17me2a 16497732, 19405910 Methylates histone H3 at 'Arg-17' (H3R17me), forming mainly asymmetric dimethylarginine (H3R17me2a), leading to activate transcription via chromatin remodeling. CARM1-directed arginine methylation of histone H3 in the promoters of steroid hormone-responsive genes is induced by steroid hormone treatment of cells. #
CBLL1
(details)
21225 E3 ubiquitin-protein ligase Hakai (EC 2.3.2.27) (Casitas B-lineage lymphoma-transforming sequence-like protein 1) (c-Cbl-like protein 1) (RING finger protein 188) (RING-type E3 ubiquitin transferase Hakai) 79872 Q75N03 HAKAI_HUMAN zf_Hakai PF18408 161-191 Cbll1 2144842 Q9JIY2 HAKAI_MOUSE RNF Ring finger proteins RNA modification RNA methylation 29507755 WMM RNA A of mRNA m6A 29507755 # New
CBX1
(details)
1551 chromobox homolog 1 10951 P83916 CBX1_HUMAN Chromo PF00385 21-69, Chromo_shadow PF01393 118-170 Cbx1 105369 P83917 CBX1_MOUSE # # Histone modification read # 21047797 # histone H3K9me3, H3K27me3 # 21047797 Binding data indicate that Cbx1, -3, and -5 bind with greater affinity to H3K9me3. #
CBX2
(details)
1552 chromobox homolog 2 84733 Q14781 CBX2_HUMAN Chromo PF00385 12-60, CBX7_C PF17218 492-523 Cbx2 88289 P30658 CBX2_MOUSE # # Histone modification read # 21047797 PRC1 histone H3K9me3, H3K27me3 # 21047797 Cbx2 and Cbx7 recognized both H3K9me3 and H3K27me3, whereas Cbx4 preferred H3K9me3. #
CBX3
(details)
1553 chromobox homolog 3 11335 Q13185 CBX3_HUMAN Chromo PF00385 30-78, Chromo_shadow PF01393 123-174 Cbx3 108515 P23198 CBX3_MOUSE # # Histone modification read # 21047797 RING2-L3MBTL2, L3MBTL1 histone H3K9me3 # 21047797 Cbx3 chromodomain binds to H3K9me3 but not to H3K27me3. #
CBX4
(details)
1554 chromobox homolog 4 8535 O00257 CBX4_HUMAN Chromo PF00385 11-60, CBX7_C PF17218 533-559 Cbx4 1195985 O55187 CBX4_MOUSE # # Histone modification read # 21047797 PRC1 histone H3K9me3 # 21047797 Cbx2 and Cbx7 recognizes both H3K9me3 and H3K27me3, whereas Cbx4 prefers H3K9me3. #
CBX5
(details)
1555 chromobox homolog 5 23468 P45973 CBX5_HUMAN Chromo PF00385 20-69, Chromo_shadow PF01393 123-174 Cbx5 109372 Q61686 CBX5_MOUSE # # Histone modification read # 21047797 # histone H3K9me, H3K27me3 # 21047797 Excluded from chromatin when 'Tyr-41' of histone H3 is phosphorylated (H3Y41ph). #
CBX6
(details)
1556 chromobox homolog 6 23466 O95503 CBX6_HUMAN Chromo PF00385 11-60, CBX7_C PF17218 358-386 Cbx6 3512628 Q9DBY5 CBX6_MOUSE # # Histone modification read # 21047797 PRC1 histone H3K9me3, H3K27me3 # 21047797 Cbx6 and Cbx8 have functional aromatic cages and hydrophobic fingers very similar to those of Cbx2, -4, and -7, but the former bind to H3K9me3 and H3K27me3 peptides with much lower affinity. #
CBX7
(details)
1557 chromobox homolog 7 23492 O95931 CBX7_HUMAN Chromo PF00385 11-60, CBX7_C PF17218 212-239 Cbx7 1196439 Q8VDS3 CBX7_MOUSE # # Histone modification read # 21047797 PRC1 histone H3K9me3, H3K27me3 # 21047797 Cbx2 and Cbx7 recognize both H3K9me3 and H3K27me3, whereas Cbx4 prefers H3K9me3. #
CBX8
(details)
15962 chromobox homolog 8 57332 Q9HC52 CBX8_HUMAN Chromo PF00385 11-60, CBX7_C PF17218 348-381 Cbx8 1353589 Q9QXV1 CBX8_MOUSE # # Histone modification read # 21047797 PRC1 histone H3K9me3, H3K27me3 # 21047797 Cbx6 and Cbx8 have functional aromatic cages and hydrophobic fingers very similar to those of Cbx2, -4, and -7, but the former bind to H3K9me3 and H3K27me3 peptides with much lower affinity. #
CCDC101
(details)
25156 coiled-coil domain containing 101 112869 Q96ES7 SGF29_HUMAN SGF29_Tudor PF07039 159-288 Ccdc101 1922815 Q9DA08 SGF29_MOUSE # # Histone modification read # 21685874 ATAC histone H3K4me, H3K4me3 # 21685874 The crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29=CCDC101 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, shows that Sgf29 selectively binds H3K4me2/3 marks. #
CDC6
(details)
1744 cell division cycle 6 990 Q99741 CDC6_HUMAN domain PF13191 173-315, domain PF22606 346-403, Cdc6_C PF09079 455-542 Cdc6 1345150 O89033 CDC6_MOUSE # # Chromatin remodeling # 22358331 # chromatin # # # CDC6 interacts with the HP1 chromoshadow domain. #
CDC73
(details)
16783 cell division cycle 73 79577 Q6P1J9 CDC73_HUMAN CDC73_N PF16050 1-296, CDC73_C PF05179 358-520 Cdc73 2384876 Q8JZM7 CDC73_MOUSE # # Histone modification write cofactor Histone methylation # # histone # # # UniProt: PAF1C recruits the RNF20/40 E3 ubiquitin-protein ligase complex and the E2 enzyme UBE2A or UBE2B to chromatin which mediate monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). #
CDK1
(details)
1722 cyclin-dependent kinase 1 983 P06493 CDK1_HUMAN Pkinase PF00069 4-287 Cdk1 88351 P11440 CDK1_MOUSE CDK Cyclin-dependent kinases Histone modification write Histone phosphorylation 22509284 # histone H1 H1ph 22509284 Histone H1, a known CDKs target protein, was strongly phosphorylated by CDK1/cyclin B, illustrating the normal activity of CDK1/cyclin B. #
CDK17
(details)
8750 cyclin-dependent kinase 17 5128 Q00537 CDK17_HUMAN Pkinase PF00069 192-473 Cdk17 97517 Q8K0D0 CDK17_MOUSE CDK Cyclin-dependent kinases Histone modification write Histone phosphorylation # # histone H1 # # Has a Ser/Thr-phosphorylating activity for histone H1. (Annotated by similarity.) #
CDK2
(details)
1771 cyclin-dependent kinase 2 1017 P24941 CDK2_HUMAN Pkinase PF00069 4-286 Cdk2 104772 P97377 CDK2_MOUSE CDK Cyclin-dependent kinases Histone modification write Histone phosphorylation 15753125 # histone H1S, H1T H1Sph, H1Tph 15753125 Cdk2 is one of the enzymes recruited to replication foci (by Cdc45 or other fork proteins), followed by H1 phosphorylation and chromatin unfolding. #
CDK3
(details)
1772 cyclin-dependent kinase 3 1018 Q00526 CDK3_HUMAN Pkinase PF00069 4-286 Cdk3-ps 1916931 Q80YP0 CDK3_MOUSE CDK Cyclin-dependent kinases Histone modification write Histone phosphorylation # # histone H1 # # Cdk3 is supposed to phosphorylate histone H1, but have found no good reference to document it. #
CDK5
(details)
1774 cyclin-dependent kinase 5 1020 Q00535 CDK5_HUMAN Pkinase PF00069 4-286 Cdk5 101765 P49615 CDK5_MOUSE CDK Cyclin-dependent kinases Histone modification write Histone phosphorylation 19729834 # histone H1 # 19729834 Reciprocal coimmunoprecipitation studies with antibodies to either myc or Cdk5 revealed that cyclin I bound to and activated endogenous Cdk5, as analyzed by histone H1 phosphorylation. #
CDK7
(details)
1778 cyclin-dependent kinase 7 1022 P50613 CDK7_HUMAN Pkinase PF00069 12-295 Cdk7 102956 Q03147 CDK7_MOUSE CDK, TFIIH Cyclin-dependent kinases, General transcription factor IIH complex subunits Histone modification write Histone phosphorylation 10722743 # histone H1 # 10722743 Cdk7, is able to phosphorylate histone H1, and the basal activity is increased 2-fold in the presence of recombinant human cyclin H (the activating partner of Cdk7). #
CDK9
(details)
1780 cyclin-dependent kinase 9 1025 P50750 CDK9_HUMAN Pkinase PF00069 19-315 Cdk9 1328368 Q99J95 CDK9_MOUSE CDK Cyclin-dependent kinases Histone modification cofactor # 19844166 # histone # # # CDK9 functions to guide a complex network of chromatin modifications including histone H2B monoubiquitination (H2Bub1), H3 lysine 4 trimethylation (H3K4me3) and H3K36me3. UniProt: Protein kinase involved in the regulation of transcription. Part of the complex P-TEFb involved in cotranscriptional histone modification. #
CDY1
(details)
1809 chromodomain protein, Y-linked, 1 9085 Q9Y6F8 CDY1_HUMAN Chromo PF00385 6-57, ECH_1 PF00378 303-535 # # # # # # Histone modification write Histone acetylation 12072557 # histone H4 # 12072557 Human CDY and mouse CDYL=CDY1 proteins exhibit histone acetyltransferase activity in vitro, with a strong preference for histone H4. #
CDY1B
(details)
23920 chromodomain protein, Y-linked, 1B 253175 Q9Y6F8 CDY1_HUMAN Chromo PF00385 6-57, ECH_1 PF00378 303-535 # # # # # # Histone modification write Histone acetylation 12072557 # histone H4 # 12072557 Human CDY and mouse CDYL=CDY1B proteins exhibit histone acetyltransferase activity in vitro, with a strong preference for histone H4. #
CDY2A
(details)
1810 chromodomain protein, Y-linked, 2A 9426 Q9Y6F7 CDY2_HUMAN Chromo PF00385 6-57, ECH_1 PF00378 304-537 # # # # # # Histone modification write Histone acetylation # # histone # # # May have histone acetyltransferase activity. (Annotated by similarity.) #
CDY2B
(details)
23921 chromodomain protein, Y-linked, 2B 203611 Q9Y6F7 CDY2_HUMAN Chromo PF00385 6-57, ECH_1 PF00378 304-537 # # # # # # Histone modification write Histone acetylation 22498752 # histone # # # CDY2B annotated as histone acetyltransferase in UniProt. #
CDYL
(details)
1811 chromodomain protein, Y-like 9425 Q9Y232 CDYL1_HUMAN Chromo PF00385 61-112, ECH_1 PF00378 363-594 Cdyl 1339956 Q9WTK2 CDYL_MOUSE # # Histone modification write Histone acetylation 12072557 # histone H4 # 12072557 Human CDY and mouse CDYL proteins exhibit histone acetyltransferase activity in vitro, with a strong preference for histone H4. #
CDYL2
(details)
23030 chromodomain protein, Y-like 2 124359 Q8N8U2 CDYL2_HUMAN Chromo PF00385 7-57, ECH_1 PF00378 271-500 Cdyl2 1923046 Q9D5D8 CDYL2_MOUSE # # Histone modification read # 23455924 # histone H3K9me3 # 21774827 Many mouse chromodomain proteins are reported to bind H3K9me3 in vitro, including CDYL, CDYL2, CBX2, CBX4, CBX7 and M-phase phosphoprotein 8 (MPP8). #
CECR2
(details)
1840 cat eye syndrome chromosome region, candidate 2 27443 Q9BXF3 CECR2_HUMAN Bromodomain PF00439 446-524 Cecr2 1923799 # # # # Histone modification read # 22464331 CERF, CERF histone H2A, H3 # 22464331 Fig. 5 in the reference. #
CELF1
(details)
2549 CUGBP Elav-like family member 1 (CELF-1) (50 kDa nuclear polyadenylated RNA-binding protein) (Bruno-like protein 2) (CUG triplet repeat RNA-binding protein 1) (CUG-BP1) (CUG-BP- and ETR-3-like factor 1) (Deadenylation factor CUG-BP) (Embryo deadenylation element-binding protein homolog) (EDEN-BP homolog) (RNA-binding protein BRUNOL-2) 10658 Q92879 CELF1_HUMAN RRM_1 PF00076 19-85 110-174 403-473 Celf1 1342295 P28659 CELF1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CELF2
(details)
2550 CUGBP Elav-like family member 2 (CELF-2) (Bruno-like protein 3) (CUG triplet repeat RNA-binding protein 2) (CUG-BP2) (CUG-BP- and ETR-3-like factor 2) (ELAV-type RNA-binding protein 3) (ETR-3) (Neuroblastoma apoptosis-related RNA-binding protein) (hNAPOR) (RNA-binding protein BRUNOL-3) 10659 O95319 CELF2_HUMAN RRM_1 PF00076 43-110 134-198 425-495 Celf2 1338822 Q9Z0H4 CELF2_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CELF3
(details)
11967 CUGBP Elav-like family member 3 (CELF-3) (Bruno-like protein 1) (CAG repeat protein 4) (CUG-BP- and ETR-3-like factor 3) (ELAV-type RNA-binding protein 1) (ETR-1) (Expanded repeat domain protein CAG/CTG 4) (RNA-binding protein BRUNOL-1) (Trinucleotide repeat-containing gene 4 protein) 11189 Q5SZQ8 CELF3_HUMAN RRM_1 PF00076 9-75 97-161 382-452 Celf3 1926034 Q8CIN6 CELF3_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CELF4
(details)
14015 CUGBP Elav-like family member 4 (CELF-4) (Bruno-like protein 4) (CUG-BP- and ETR-3-like factor 4) (RNA-binding protein BRUNOL-4) 56853 Q9BZC1 CELF4_HUMAN RRM_1 PF00076 56-121 154-216 442-473 Celf4 1932407 Q7TSY6 CELF4_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CELF5
(details)
14058 CUGBP Elav-like family member 5 (CELF-5) (Bruno-like protein 5) (CUG-BP- and ETR-3-like factor 5) (RNA-binding protein BRUNOL-5) 60680 Q8N6W0 CELF5_HUMAN RRM_1 PF00076 47-112 136-198 402-472 Celf5 2442333 D3Z4T1 D3Z4T1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CELF6
(details)
14059 CUGBP Elav-like family member 6 (CELF-6) (Bruno-like protein 6) (CUG-BP- and ETR-3-like factor 6) (RNA-binding protein BRUNOL-6) 60677 Q96J87 CELF6_HUMAN RRM_1 PF00076 48-113 136-199 398-468 Celf6 1923433 Q7TN33 CELF6_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11158314, 12649496 # RNA mRNA # 11158314, 12649496 Regulates MSE-dependent alternative splicing of cTNT during development in vertebrates. New
CENPC
(details)
1854 centromere protein C 1060 Q03188 CENPC_HUMAN CENP_C_N PF15622 1-320, CENP-C_mid PF15620 324-596, CENP-C_C PF11699 857-940 Cenpc1 99700 P49452 CENPC_MOUSE # # DNA modification DNA methylation 19482874 # DNA C 5mC 19482874 CENPC recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and regulates the histone code in these regions. #
CHAF1A
(details)
1910 chromatin assembly factor 1, subunit A (p150) 10036 Q13111 CAF1A_HUMAN CAF1-p150_N PF15557 18-224, CAF-1_p150 PF11600 324-482, CAF1A PF12253 560-633, CAF1-p150_C2 PF15539 666-932 Chaf1a 1351331 Q9QWF0 CAF1A_MOUSE # # Chromatin remodeling # 7600578 CAF-1 histone H3, H4 # 7600578 p150=CHAF1A and p60 directly interact and are both required for DNA replication-dependent assembly of nucleosomes. Deletion of the p60-binding domain from the p150 protein prevents chromatin assembly. p150 and p60 form complexes with newly synthesized histones H3 and acetylated H4 in human cell extracts, suggesting that such complexes are intermediates between histone synthesis and assembly onto replicating DNA. #
CHAF1B
(details)
1911 chromatin assembly factor 1, subunit B (p60) 8208 Q13112 CAF1B_HUMAN WD40 PF00400 60-94 121-157 162-199 345-372, CAF-1_p60_C PF15512 384-540 Chaf1b 1314881 Q9D0N7 CAF1B_MOUSE WDR WD repeat domain containing Chromatin remodeling # 7600578 WINAC, CAF-1 histone H3, H4 # 7600578 p150 and p60==CHAF1B directly interact and are both required for DNA replication-dependent assembly of nucleosomes. Deletion of the p60-binding domain from the p150 protein prevents chromatin assembly. p150 and p60 form complexes with newly synthesized histones H3 and acetylated H4 in human cell extracts, suggesting that such complexes are intermediates between histone synthesis and assembly onto replicating DNA. #
CHD1
(details)
1915 chromodomain helicase DNA binding protein 1 1105 O14646 CHD1_HUMAN Chromo PF00385 313-351 389-443, SNF2-rel_dom PF00176 482-764, Helicase_C PF00271 789-902, CDH1_2_SANT_HL1 PF18375 1124-1211, CHD1-like_C PF13907 1409-1500 Chd1 88393 P40201 CHD1_MOUSE # # Chromatin remodeling # 12592387 # DNA # # 12592387 These proteins have a DNA-binding domain as well as a chromodomain motif that can directly effect chromatin structure and gene transcription. There are currently four known members of this gene family in humans (CHD1–CHD4). #
CHD1L
(details)
1916 chromodomain helicase DNA binding protein 1-like 9557 Q86WJ1 CHD1L_HUMAN SNF2-rel_dom PF00176 49-327, Helicase_C PF00271 348-459 Chd1l 1915308 Q9CXF7 CHD1L_MOUSE # # Chromatin remodeling # 19661379 # DNA # # 19661379 A chromatin-remodeling enzyme, ALC1 (Amplified in Liver Cancer 1, also known as CHD1L), that interacts with poly(ADP-ribose) and catalyzes PARP1-stimulated nucleosome sliding. #
CHD2
(details)
1917 chromodomain helicase DNA binding protein 2 1106 O14647 CHD2_HUMAN Chromo PF00385 300-338 378-447, SNF2-rel_dom PF00176 487-767, Helicase_C PF00271 792-905, CDH1_2_SANT_HL1 PF18375 1129-1219, CHD1-like_C PF13907 1465-1553 Chd2 2448567 E9PZM4 CHD2_MOUSE # # Chromatin remodeling # 12592387 # DNA # # 12592387 These proteins have a DNA-binding domain as well as a chromodomain motif that can directly effect chromatin structure and gene transcription. There are currently four known members of this gene family in humans (CHD1–CHD4). #
CHD3
(details)
1918 chromodomain helicase DNA binding protein 3 1107 Q12873 CHD3_HUMAN CHDNT PF08073 155-201, PHD PF00628 382-423 458-500, Chromo PF00385 630-682, SNF2-rel_dom PF00176 738-1034, Helicase_C PF00271 1061-1174, DUF1087 PF06465 1294-1350, CHDII_SANT-like PF06461 1376-1517, CHDCT2 PF08074 1737-1884 Chd3 1344395 # # PHF Zinc fingers, PHD-type Chromatin remodeling # 12592387 NuRD DNA # # 12592387 These proteins have a DNA-binding domain as well as a chromodomain motif that can directly effect chromatin structure and gene transcription. There are currently four known members of this gene family in humans (CHD1–CHD4). #
CHD4
(details)
1919 chromodomain helicase DNA binding protein 4 1108 Q14839 CHD4_HUMAN CHDNT PF08073 165-217, PHD PF00628 373-414 452-493, Chromo PF00385 621-673, SNF2-rel_dom PF00176 728-1024, Helicase_C PF00271 1052-1164, DUF1087 PF06465 1291-1350, CHDII_SANT-like PF06461 1379-1520, CHDCT2 PF08074 1726-1872 Chd4 1344380 Q6PDQ2 CHD4_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling # 12592387 NuRD DNA # # 12592387 These proteins have a DNA-binding domain as well as a chromodomain motif that can directly effect chromatin structure and gene transcription. There are currently four known members of this gene family in humans (CHD1–CHD4). #
CHD5
(details)
16816 chromodomain helicase DNA binding protein 5 26038 Q8TDI0 CHD5_HUMAN CHDNT PF08073 149-200, PHD PF00628 346-387 418-460, Chromo PF00385 590-643, SNF2-rel_dom PF00176 701-998, Helicase_C PF00271 1025-1138, DUF1087 PF06465 1299-1354, CHDII_SANT-like PF06461 1383-1527, CHDCT2 PF08074 1733-1879 Chd5 3036258 A2A8L1 CHD5_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling # 12592387 # histone H3K27me3, H3K4 # 12592387, 23948251 A novel gene encoding a protein with chromatin remodeling, helicase and DNA-binding motifs. This gene (CHD5) is the fifth member of the CHD gene family identified in humans. #
CHD6
(details)
19057 chromodomain helicase DNA binding protein 6 # Q8TD26 CHD6_HUMAN Chromo PF00385 292-354 375-428, SNF2-rel_dom PF00176 464-750, Helicase_C PF00271 784-897 Chd6 1918639 A3KFM7 CHD6_MOUSE # # Chromatin remodeling # 12592387 # chromatin # # 12592387 A novel gene encoding a protein with chromatin remodeling, helicase and DNA-binding motifs. This gene (CHD5=CHD6) is the fifth member of the CHD gene family identified in humans. #
CHD7
(details)
20626 chromodomain helicase DNA binding protein 7 55636 Q9P2D1 CHD7_HUMAN Chromo PF00385 801-861 881-935, SNF2-rel_dom PF00176 968-1257, Helicase_C PF00271 1291-1404, BRK PF07533 2563-2609 2644-2687 Chd7 2444748 A2AJK6 CHD7_MOUSE # # Chromatin remodeling # 5201778 # chromatin # # 5201778 CHD7 protein counts several functional domains: two chromo (chromatin organization modifier), one SNF2/SWI, one helicase and two BRK domains (Figure 4). Chromo domains are implicated in the recognition of lysine-methylated histone tails and of DNA (and RNA) targets. #
CHD8
(details)
20153 chromodomain helicase DNA binding protein 8 57680 Q9HCK8 CHD8_HUMAN Chromo PF00385 642-703 724-778, SNF2-rel_dom PF00176 813-1100, Helicase_C PF00271 1135-1247, BRK PF07533 2310-2351 Chd8 1915022 Q09XV5 CHD8_MOUSE # # Chromatin remodeling # 18378692 CHD8, MLL2/3, MLL4/WBP7 chromatin H1 # 19151705, 18378692 CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes. #
CHD9
(details)
25701 chromodomain helicase DNA binding protein 9 80205 Q3L8U1 CHD9_HUMAN Chromo PF00385 690-751 773-827, SNF2-rel_dom PF00176 863-1149, Helicase_C PF00271 1183-1296, BRK PF07533 2484-2528 2555-2603 Chd9 1924001 Q8BYH8 CHD9_MOUSE # # Chromatin remodeling # 16554032 # DNA # # 16554032 PRIC320=CHD9 is similar to a recently described chromodomain helicase DNA-binding protein [27]. The recognition of this chromatin remodeling function and nuclear receptor coactivator function is suggestive of the multiple roles played by these nuclear receptor cofactors. #
CHEK1
(details)
1925 checkpoint kinase 1 1111 O14757 CHK1_HUMAN Pkinase PF00069 10-264 Chek1 1202065 O35280 CHK1_MOUSE # # Histone modification write Histone phosphorylation # # histone H3.1 H3.1ph # UniProt: May regulate the transcription of genes that regulate cell-cycle progression through the phosphorylation of histones. Phosphorylates histone H3.1 (to form H3T11ph), which leads to epigenetic inhibition of a subset of genes. #
CHRAC1
(details)
13544 chromatin accessibility complex 1 54108 Q9NRG0 CHRC1_HUMAN CBFD_NFYB_HMF PF00808 18-79 Chrac1 2135796 Q9JKP8 CHRC1_MOUSE # # Histone chaperone # 10880450 CHRAC DNA # # 10880450 Human homologues of two novel putative histone-fold proteins in Drosophila CHRAC are present in HuCHRAC. The two human histone-fold proteins form a stable complex that binds naked DNA but not nucleosomes. #
CHTOP
(details)
24511 chromatin target of PRMT1 26097 Q9Y3Y2 CHTOP_HUMAN FoP_duplication PF13865 167-243 Chtop 1913761 Q9CY57 CHTOP_MOUSE # # # # 25284789 # DNA # # # 5-Hydroxymethylcytosine plays a critical role in glioblastomagenesis by recruiting the CHTOP-methylosome complex. #
CHUK
(details)
1974 conserved helix-loop-helix ubiquitous kinase 1147 O15111 IKKA_HUMAN Pkinase PF00069 16-290, IKBKB_SDD PF18397 387-658, IKKbetaNEMObind PF12179 708-744 Chuk 99484 Q60680 IKKA_MOUSE # # Histone modification write Histone phosphorylation 17434128 # histone H3 # 17434128 In the nucleus, IKKα=CHUK is recruited to the promoter region of the NF-κB-regulated genes by interacting with CBP, and contributes to NF-κB-mediated gene expressions through phosphorylation of histone H3. #
CIR1
(details)
24217 corepressor interacting with RBPJ, 1 9541 Q86X95 CIR1_HUMAN Cir_N PF10197 13-49 Cir1 1914185 Q9DA19 CIR1_MOUSE # # Histone modification read # 9874765 # histone # # 9874765 CIR binds to histone deacetylase and to SAP30 and serves as a linker between CBF1 and the histone deacetylase complex. #
CIT
(details)
1985 citron rho-interacting serine/threonine kinase 11113 O14578 CTRO_HUMAN Pkinase PF00069 97-360, Pkinase_C PF00433 376-422, PH PF00169 1445-1563, CNH PF00780 1602-1855 Cit 105313 P49025 CTRO_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone phosphorylation 18245345 # histone H3K9 H3K9me 18245345 Drosophila sticky/citron kinase (=CIT) is a regulator of cell-cycle progression, genetically interacts with Argonaute 1 and modulates epigenetic gene silencing. #
CLNS1A
(details)
2080 chloride channel, nucleotide-sensitive, 1A 1207 P54105 ICLN_HUMAN Voldacs PF03517 35-159 Clns1a 109638 Q61189 ICLN_MOUSE # # Histone modification write cofactor Histone methylation # methylosome # # # # Part of the methylosome complex #
CLOCK
(details)
2082 clock circadian regulator 9575 O15516 CLOCK_HUMAN HLH PF00010 34-83, PAS PF00989 109-177, PAS_11 PF14598 274-377 Clock 99698 O08785 CLOCK_MOUSE KAT, bHLH Chromatin-modifying enzymes / K-acetyltransferases, Basic helix-loop-helix proteins Histone modification write Histone acetylation # # histone H3, H4 # # Acetylates primarily histones H3 and H4. (Annotated by similarity.) #
CRB2
(details)
18688 crumbs family member 2 286204 Q5IJ48 CRUM2_HUMAN EGF PF00008 110-144 149-179 188-259 321-356 361-384 609-639 811-841 1060-1092 1176-1209, Laminin_G_2 PF02210 503-587 668-775 898-1020, hEGF PF12661 1098-1128 1137-1171 Crb2 2679260 Q80YA8 CRUM2_MOUSE # # Histone modification read # 21423274 # histone H4K20 # 21423274 Table 1 in the reference. #
CREBBP
(details)
2348 CREB binding protein 1387 Q92793 CBP_HUMAN zf-TAZ PF02135 351-431 1772-1843, KIX PF02172 590-669, Bromodomain PF00439 1103-1176, RING_CBP-p300 PF06001 1192-1230, HAT_KAT11 PF08214 1340-1645, ZZ PF00569 1702-1743, Creb_binding PF09030 2035-2111 Crebbp 1098280 P45481 CBP_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 8945521 # histone # # 8945521 The transcriptional coactivators p300 and CBP=CREBBP are histone acetyltransferases. #
CSNK2A1
(details)
2457 casein kinase 2, alpha 1 polypeptide 1457 P68400 CSK21_HUMAN Pkinase PF00069 39-324 Csnk2a1 88543 Q60737 CSK21_MOUSE # # Histone modification # 24217316, 22325352 RING2-FBRS histone # # 24217316, 22325352 Part of a RING2 complex. #
CSRP2BP
(details)
15904 CSRP2 binding protein 57325 Q9H8E8 CSR2B_HUMAN Acetyltransf_1 PF00583 669-751 Csrp2bp 1917264 Q8CID0 CSR2B_MOUSE # # Histone modification write Histone acetylation 19103755 ATAC histone H4 # 19103755 The SANT domains in ADA2a and ZZZ3/ATAC1 might enable the complex to associate with nucleosome tails in order to potentiate the catalytic activities of GCN5 and ATAC2, similar to what has been shown for the SANT domains in yeast Ada2 and Swi3. #
CTBP1
(details)
2494 C-terminal binding protein 1 1487 Q13363 CTBP1_HUMAN 2-Hacid_dh_C PF02826 135-317 Ctbp1 1201685 O88712 CTBP1_MOUSE # # Chromatin remodeling # 21102443 LSD-CoREST chromatin # # 21102443 CtBP is a homodimer or heterodimer of CtBP1 and CtBP2 that assembles with a diverse array of factors that regulate chromatin structure. #
CTBP2
(details)
2495 C-terminal binding protein 2 1488 P56545 CTBP2_HUMAN 2-Hacid_dh_C PF02826 141-323 Ctbp2 1201686 P56546 CTBP2_MOUSE # # Histone modification write cofactor Histone methylation 16702210 # histone H3K9 H3K9me, H3K9me2 16702210 It is possible that CtBPs or CtBP-interacting molecules have various impacts on the G9a/GLP-mediated (a SET-domain mammalian histone methyltransferase responsible for mono- and dimethylation of lysine 9 in histone H3 (H3K9)) functions through Wiz interaction. #
CTCF
(details)
13723 CCCTC-binding factor (zinc finger protein) 10664 P49711 CTCF_HUMAN zf-C2H2 PF00096 266-288 294-316 322-345 351-373 379-401 437-460 555-575 Ctcf 109447 Q61164 CTCF_MOUSE ZNF Zinc fingers, C2H2-type Chromatin remodeling, TF TF activator 16949368 # DNA DNA motif # 16949368 A CTCF-CHD8 complex is involved in both enhancer blocking and epigenetic remodeling at chromatin boundary in vivo. #
CTCFL
(details)
16234 CCCTC-binding factor (zinc finger protein)-like 140690 Q8NI51 CTCFL_HUMAN zf-C2H2 PF00096 313-336 342-364 398-421 428-451 546-566 Ctcfl 3652571 A2APF3 CTCFL_MOUSE ZNF Zinc fingers, C2H2-type Chromatin remodeling # 18765639 # DNA # # 18765639 BORIS=CTCFL acts as a scaffold upon which BAT3 and SET1A assemble and through which BAT3 and SET1A exert their effects upon chromatin structure and gene expression. In contrast to CTCF, BORIS appears to be a methylation-independent DNA-binding protein (28b) that activates, rather than inhibits, gene expression. #
CTR9
(details)
16850 CTR9, Paf1/RNA polymerase II complex component 9646 Q6PD62 CTR9_HUMAN TPR_19 PF14559 170-231 508-564 715-750, TPR_8 PF13181 312-373 681-714, TPR_10 PF13374 451-484, domain PF13432 567-680 Ctr9 109345 Q62018 CTR9_MOUSE TTC Tetratricopeptide (TTC) repeat domain containing Histone modification cofactor # 24036311 # histone H3K36 # # CTR9/PAF1c regulates molecular lineage identity, histone H3K36 trimethylation and genomic imprinting during preimplantation development. #
CUL1
(details)
2551 cullin 1 8454 Q13616 CUL1_HUMAN Cullin PF00888 20-662, Cullin_Nedd8 PF10557 706-766 Cul1 1349658 Q9WTX6 CUL1_MOUSE # # Chromatin remodeling cofactor # 9663463 # histone H3K9me3, H3K36me3, H1.4K26me3 H3K9, H3K36, H1.4K26 21757720 The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein. The JMJD2/KDM43 histone demethylase family removes trimethylated H3K9, H3K36, and H1.4K26 . #
CUL2
(details)
2552 cullin 2 8453 Q13617 CUL2_HUMAN Cullin PF00888 13-644, Cullin_Nedd8 PF10557 675-736 Cul2 1918995 Q9D4H8 CUL2_MOUSE # # Chromatin remodeling cofactor # # # chromatin HP1 (Heterochromatin protein 1) # 9122164 The VHL-HP1 (heterochromatin protein 1) interaction recruits VHL to chromatin. VHL interacts with elongin B, elongin C, and cullin 2 through its α domain and these proteins form an E3 ubiquitin ligase complex. #
CUL3
(details)
2553 cullin 3 8452 Q13618 CUL3_HUMAN Cullin PF00888 34-665, Cullin_Nedd8 PF10557 698-760 Cul3 1347360 Q9JLV5 CUL3_MOUSE # # Histone modification write Histone ubiquitination 15897469 # histone MACROH2A # 15897469 E3 ubiquitin ligase consisting of SPOP and CULLIN3=CUL3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. #
CUL4A
(details)
2554 cullin 4A 8451 Q13619 CUL4A_HUMAN Cullin PF00888 63-661, Cullin_Nedd8 PF10557 691-751 Cul4a 1914487 Q3TCH7 CUL4A_MOUSE # # Histone modification write Histone ubiquitination 16678110 # histone H3, H4 # 16678110 Results shown in Figure 4A demonstrate that knockdown of CUL4A or CUL4B significantly reduces H3 and H4 ubiquitylation levels, indicating that both CUL4A and CUL4B contribute to histone H3 and H4 ubiquitylation in vivo. #
CUL4B
(details)
2555 cullin 4B 8450 Q13620 CUL4B_HUMAN Cullin PF00888 214-814, Cullin_Nedd8 PF10557 844-905 Cul4b 1919834 A2A432 CUL4B_MOUSE # # Histone modification write Histone ubiquitination 16678110 # histone H3, H4 # 16678110 Results shown in Figure 4A demonstrate that knockdown of CUL4A or CUL4B significantly reduces H3 and H4 ubiquitylation levels, indicating that both CUL4A and CUL4B contribute to histone H3 and H4 ubiquitylation in vivo. #
CUL5
(details)
2556 cullin 5 8065 Q93034 CUL5_HUMAN Cullin PF00888 18-671, Cullin_Nedd8 PF10557 711-772 Cul5 1922967 Q9D5V5 CUL5_MOUSE # # DNA modification cofactor DNA methylation 20847044 # DNA # # 20847044 In cancer cells, many promoters become aberrantly methylated through the activity of the de novo DNA methyltransferases DNMT3a and DNMT3b and acquire repressive chromatin marks, and, indeed, DNMT3b interacted with CUL1, CUL2, CUL3, CUL4A, and CUL5. #
CXXC1
(details)
24343 CXXC finger protein 1 30827 Q9P0U4 CXXC1_HUMAN PHD PF00628 29-73, zf-CXXC PF02008 163-208, CpG_bind_C PF12269 400-636 Cxxc1 1921572 Q9CWW7 CXXC1_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling, TF # 21407193 COMPASS DNA CG, DNA motif # 21407193 CFP1=CXXC1 is a CXXC domain-containing protein. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. #
DAPK3
(details)
2676 death-associated protein kinase 3 1613 O43293 DAPK3_HUMAN Pkinase PF00069 13-275 Dapk3 1203520 O54784 DAPK3_MOUSE # # Histone modification write Histone phosphorylation 12560483 # histone H3T11 # 12560483 Dlk/ZIP=DAPK3 kinase phosphorylates histone H3 at a novel site, Thr11, rather than Ser10, which is characteristic of mitotic chromosomes. #
DAXX
(details)
2681 death-domain associated protein 1616 Q9UER7 DAXX_HUMAN Daxx PF03344 56-145, DAXX_hist_bd PF20920 301-381 Daxx 1197015 O35613 DAXX_MOUSE # # # # 23075851 # histone H3.3 # # DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. #
DDB1
(details)
2717 damage-specific DNA binding protein 1, 127kDa 1642 Q16531 DDB1_HUMAN MMS1_N PF10433 75-542, CPSF_A PF03178 788-1100 Ddb1 1202384 Q3U1J4 DDB1_MOUSE # # Histone modification write Histone ubiquitination 16678110 # histone H2A # 16678110 DDB1-CUL4ADDB2 E3 in vivo targets histone H2A for ubiquitination at UV-damage DNA sites, where DDB2 serves as the substrate receptor. #
DDB2
(details)
2718 damage-specific DNA binding protein 2, 48kDa 1643 Q92466 DDB2_HUMAN WD40 PF00400 234-271 284-316 Ddb2 1355314 Q99J79 DDB2_MOUSE WDR WD repeat domain containing Histone modification write cofactor Histone ubiquitination 16678110 # histone # # 16678110 DDB1-CUL4ADDB2 E3 in vivo targets histone H2A for ubiquitination at UV-damage DNA sites, where DDB2 serves as the substrate receptor. #
DDX17
(details)
2740 Probable ATP-dependent RNA helicase DDX17 (EC 3.6.4.13) (DEAD box protein 17) (DEAD box protein p72) (DEAD box protein p82) (RNA-dependent helicase p72) 10521 Q92841 DDX17_HUMAN DEAD PF00270 195-365, Helicase_C PF00271 405-512 Ddx17 1914290 Q501J6 DDX17_MOUSE DDX DEAD-box helicases RNA modification Alternative splicing 24910439 # RNA mRNA # 24910439 Coregulator of master transcriptional regulators of differentiation New
DDX21
(details)
2744 DEAD (Asp-Glu-Ala-Asp) box helicase 21 9188 Q9NR30 DDX21_HUMAN DEAD PF00270 211-383, Helicase_C PF00271 434-532, GUCT PF08152 620-708 Ddx21 1860494 Q9JIK5 DDX21_MOUSE DDX DEAD-boxes RNA modification # 11237763 B-WICH RNA # # 11237763 Human RNA helicase II/Gu (hRH II/Gu) protein unwinds double-stranded RNA, folds single-stranded RNA, and may play important roles in ribosomal RNA biogenesis, RNA editing, RNA transport, and general transcription. #
DDX5
(details)
2746 Probable ATP-dependent RNA helicase DDX5 (EC 3.6.4.13) (DEAD box protein 5) (RNA helicase p68) 1655 P17844 DDX5_HUMAN DEAD PF00270 118-288, Helicase_C PF00271 328-435, P68HR PF08061 500-532 551-583 Ddx5 105037 Q61656 DDX5_MOUSE DDX DEAD-box helicases RNA modification Alternative splicing 24910439 # RNA RNA # 24910439 Coregulator of master transcriptional regulators of differentiation New
DDX50
(details)
17906 DEAD (Asp-Glu-Ala-Asp) box polypeptide 50 79009 Q9BQ39 DDX50_HUMAN DEAD PF00270 162-334, Helicase_C PF00271 385-483, GUCT PF08152 574-662 Ddx50 2182303 Q99MJ9 DDX50_MOUSE DDX DEAD-boxes RNA modification # 11823437 # RNA # # 11823437 In addition to the proposed role of DEAD-box RNA helicases in transcription, some of these enzymes promote mRNA translation. #
DEK
(details)
2768 DEK proto-oncogene 7913 P35659 DEK_HUMAN DEK_C PF08766 320-374 Dek 1926209 Q7TNV0 DEK_MOUSE # # Chromatin remodeling # 17524367 B-WICH histone H4 # 17524367 It has been suggested that DEK functions as an “architectural” protein in chromatin. This is because DEK changes the structure of the DNA to which it is bound and could therefore influence gene activity. #
DHX9
(details)
2750 ATP-dependent RNA helicase A (EC 3.6.4.13) (DEAH box protein 9) (DExH-box helicase 9) (Leukophysin) (LKP) (Nuclear DNA helicase II) (NDH II) (RNA helicase A) 1660 Q08211 DHX9_HUMAN dsrm PF00035 4-70 180-251, DEAD PF00270 395-547, Helicase_C PF00271 639-768, HA2_N PF04408 832-860, HA2_C PF21010 861-919, OB_NTP_bind PF07717 991-1073 Dhx9 108177 O70133 DHX9_MOUSE DHX DEAH-box helicases RNA modification Alternative splicing 28221134 # RNA mRNA # 28221134 Regulates alternative splicing of E1A New
DMAP1
(details)
18291 DNA methyltransferase 1 associated protein 1 55929 Q9NPF5 DMAP1_HUMAN SANT_DAMP1_like PF16282 124-202, DMAP1 PF05499 242-400 Dmap1 1913483 Q9JI44 DMAP1_MOUSE # # Chromatin remodeling # 14966270 NuA4, NuA4-related complex, SRCAP chromatin # # 14966270 SANT-domain protein DMAP1 links NuA4 to DNA replication and is also present in distinct proteins #
DNAJC1
(details)
20090 DnaJ (Hsp40) homolog, subfamily C, member 1 64215 Q96KC8 DNJC1_HUMAN DnaJ PF00226 65-126, Myb_DNA-binding PF00249 496-541 Dnajc1 103268 Q61712 DNJC1_MOUSE DNAJ Heat shock proteins / DNAJ (HSP40) Histone modification write cofactor, Histone modification erase cofactor Histone acetylation, Histone deacetylation 16271702 # histone # # 16271702 HTJ1=DNAJC1 consists of two SANT domains separated by a spacer region. SANT domains can also mediate protein–protein interaction, particularly with histone deacetylases and histone acetyl transferases. #
DNAJC2
(details)
13192 DnaJ (Hsp40) homolog, subfamily C, member 2 27000 Q99543 DNJC2_HUMAN DnaJ PF00226 88-157, domain PF21884 178-283, RAC_head PF16717 340-426, Myb_DNA-binding PF00249 553-599 Dnajc2 99470 P54103 DNJC2_MOUSE DNAJ Heat shock proteins / DNAJ (HSP40) Histone modification read # 21179169 # histone H2A # 21179169 The ubiquitin mark at histone H2A may be a docking site for ZRF1. #
DND1
(details)
23799 DND microRNA-mediated repression inhibitor 1 373863 Q8IYX4 DND1_HUMAN RRM_1 PF00076 60-122, DND1_DSRM PF14709 256-331 Dnd1 2447763 Q6VY05 DND1_MOUSE RBM RNA binding motif (RRM) containing RNA modification # 23890083 # RNA # # 23890083 The RNA binding protein DEAD-END (DND1) is one of the few proteins known to regulate microRNA (miRNA) activity at the level of miRNA-mRNA interaction. APOBEC3G may bind mRNAs (maybe together with DND1) and subsequently interact with components of the miRISC to activate translation repression or interact with translation initiation factors to inhibit them. APOBEC3G may bind to DND1 and sequester it away from mRNAs and miRNAs, the cytidine deaminase activity of APOBEC3 may allow it to edit the 3′-UTR sequences of P27, LATS2 and CX43 to inhibit DND1 binding. #
DNMT1
(details)
2976 DNA (cytosine-5-)-methyltransferase 1 1786 P26358 DNMT1_HUMAN DMAP_binding PF06464 19-101, DNMT1-RFD PF12047 394-535, zf-CXXC PF02008 646-691, BAH PF01426 755-878 931-1100, DNA_methylase PF00145 1140-1592 Dnmt1 94912 P13864 DNMT1_MOUSE # # DNA modification DNA methylation 18754681 # DNA dhC dhU 18754681 The CXXC region (C is cysteine; X is any amino acid) of DNMT1 binds specifically to unmethylated CpG dinucleotides. Thus, the CXXC domain encompassing the amino terminus region of DNMT1 cooperates with the catalytic domain for DNA methyltransferase activity. #
DNMT3A
(details)
2978 DNA (cytosine-5-)-methyltransferase 3 alpha 1788 Q9Y6K1 DNM3A_HUMAN domain PF22855 1-283, PWWP PF00855 293-374, ADD_DNMT3 PF17980 476-530, ADDz_Dnmt3b PF21255 537-586, DNA_methylase PF00145 634-766 Dnmt3a 1261827 O88508 DNM3A_MOUSE # # DNA modification DNA methylation 12138111 # DNA dhC dhU 12138111 One form of Dnmt3a has been identified and shown to be capable of methylating DNA bothin vitro and in vivo. #
DNMT3B
(details)
2979 DNA (cytosine-5-)-methyltransferase 3 beta 1789 Q9UBC3 DNM3B_HUMAN PWWP PF00855 226-309, ADD_DNMT3 PF17980 423-471, ADDz_Dnmt3b PF21255 478-527, DNA_methylase PF00145 575-707 Dnmt3b 1261819 O88509 DNM3B_MOUSE # # DNA modification DNA methylation 10325416 # DNA dhC dhU 10325416 DNA methyltransferases (Dnmt3a and Dnmt3b) in mouse methylate hemimethylated and unmethylated templates with equal efficiencies and are candidates for de novo methyltransferases. #
DNMT3L
(details)
2980 DNA (cytosine-5-)-methyltransferase 3-like 29947 Q9UJW3 DNM3L_HUMAN ADD_DNMT3 PF17980 37-87, ADDz_Dnmt3b PF21255 96-146 Dnmt3l 1859287 Q9CWR8 DNM3L_MOUSE # # Histone modification read # 17687327 # histone H3K4 # 17687327 DNMT3L specifically interacts with the extreme amino terminus of histone H3, this interaction is strongly inhibited by methylation at lysine 4 of histone H3. #
DNTTIP2
(details)
24013 deoxynucleotidyltransferase, terminal, interacting protein 2 30836 Q5QJE6 TDIF2_HUMAN Fcf2 PF08698 640-732 Dnttip2 1923173 Q8R2M2 TDIF2_MOUSE # # Chromatin remodeling # 12786946 # histone H2A, H2B # 12786946 TdIF2 would function as a chromatin remodeling protein at the N region synthesis. #
DOT1L
(details)
24948 DOT1-like histone H3K79 methyltransferase 84444 Q8TEK3 DOT1L_HUMAN DOT1 PF08123 117-317 Dot1l 2143886 - - KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 12123582 # histone H3K79 # 12123582 Human DOT1-like (DOT1L) protein possesses intrinsic H3-K79-specific histone methyltransferase (HMTase) activity in vitro and in vivo. #
DPF1
(details)
20225 D4, zinc and double PHD fingers family 1 # Q92782 DPF1_HUMAN DPF1-3_N PF14051 14-83, PHD PF00628 274-325 327-372 Dpf1 1352748 Q9QX66 DPF1_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling cofactor # 21931736 nBAF, SWI/SNF BRM-BRG1 chromatin # # 21931736 Belongs to the neuron-specific chromatin remodeling complex (nBAF complex). Baf45b=DPF1 and Baf53b are both brain specific components of the SWI/SNF complex varaint nBAF. #
DPF2
(details)
9964 D4, zinc and double PHD fingers family 2 5977 Q92785 REQU_HUMAN DPF1-3_N PF14051 14-81, PHD PF00628 273-327 330-374 Dpf2 109529 Q61103 REQU_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling # 21888896 SWI/SNF BRM-BRG1 histone, DNA # # 21888896 The different domains of DPF2 may function in a cooperative manner in some intracellular processes, which could bind histone and DNA via tandem PHD domain and C2H2 ZF domain, respectively in the context of nucleosome. #
DPF3
(details)
17427 D4, zinc and double PHD fingers, family 3 8110 Q92784 DPF3_HUMAN DPF1-3_N PF14051 14-84, PHD PF00628 261-316 319-363 Dpf3 1917377 P58269 DPF3_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling # 21423274 BAF, nBAF, SWI/SNF BRM-BRG1 histone H3, H4 # 21423274 Table 1 in the reference. DPF3 is associated with the BAF chromatin remodeling complex and binds methylated and acetylated lysine residues of histone 3 and 4. #
DPPA3
(details)
19199 developmental pluripotency associated 3 359787 Q6W0C5 DPPA3_HUMAN PGC7_Stella PF15549 4-143 Dppa3 1920958 Q8QZY3 DPPA3_MOUSE # # Histone modification read # # # histone H3K9me2 # # Specifically recognizes and binds histone H3 dimethylated at 'Lys-9' (H3K9me2) on maternal genome, #
DPY30
(details)
24590 dpy-30 homolog (C. elegans) 84661 Q9C005 DPY30_HUMAN Dpy-30 PF05186 52-92 Dpy30 1913560 Q99LT0 DPY30_MOUSE # # Histone modification write cofactor Histone methylation 19556245 COMPASS, Menin-associated_HMT, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7, COMPASS-like MLL3,4 histone # # 19556245 The isolated MLL1 SET domain is an H3K4 monomethyltransferase. When the MLL1 SET domain fragment is assembled with a complex containing WDR5, RbBP5, Ash2L, and DPY-30, the rate of lysine methylation is dramatically increased, but only to the dimethyl form of H3K4, suggesting that the MLL1 core complex is predominantly a dimethyltransferase. #
DR1
(details)
3017 down-regulator of transcription 1, TBP-binding (negative cofactor 2) 1810 Q01658 NC2B_HUMAN CBFD_NFYB_HMF PF00808 12-75 Dr1 1100515 Q91WV0 NC2B_MOUSE # # Histone chaperone # 18838386 ATAC histone # # 18838386 YEATS2-NC2beta=DR1 histone fold module that interacts with the TATA-binding protein (TBP) and negatively regulates transcription when recruited to a promoter. #
DTX3L
(details)
30323 deltex 3 like, E3 ubiquitin ligase 151636 Q8TDB6 DTX3L_HUMAN DTX3L_a-b PF21717 134-194, DTX3L_KH-like PF21718 235-357 373-508, zf-C3HC4_2 PF13923 561-599, DTC PF18102 608-739 Dtx3l 2656973 Q3UIR3 DTX3L_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 19818714 # histone H4K91 # 19818714 BBAP=DTX3L selectively monoubiquitylates histone H4 lysine 91 and protects cells exposed to DNA-damaging agents. #
DZIP3
(details)
30938 DAZ interacting zinc finger protein 3 9666 Q86Y13 DZIP3_HUMAN TTC3_DZIP3_dom PF19179 229-330, HEPN_DZIP3 PF18738 421-546, zf-RING_2 PF13639 1148-1188 Dzip3 1917433 Q7TPV2 DZIP3_MOUSE RNF, PPP1R RING-type (C3HC4) zinc fingers, Serine/threonine phosphatases / Protein phosphatase 1, regulatory subunits Histone modification write Histone ubiquitination 18206970 # histone, RNA H2AK119 H2AK119ub 18206970 The N-CoR/HDAC1/3 complex specifically recruits a previously-unidentified specific histone H2A ubiquitin ligase, 2A-HUB/hRUL138 = DZIP3, to a subset of regulated gene promoters. #
E2F6
(details)
3120 E2F transcription factor 6 1876 O75461 E2F6_HUMAN E2F_TDP PF02319 65-128, E2F_CC-MB PF16421 143-237 E2f6 1354159 O54917 E2F6_MOUSE # # TF TF repressor # RING2-L3MBTL2, CHD8, MLL2/3, MLL4/WBP7 DNA DNA motif # # Epigenetic complex (MLL) partner. #
EED
(details)
3188 embryonic ectoderm development 8726 O75530 EED_HUMAN WD40 PF00400 181-219 233-264 400-437 Eed 95286 Q921E6 EED_MOUSE WDR WD repeat domain containing Polycomb group (PcG) protein # 9584199 PRC2 # # # 9584199 Enx1/EZH2 and EED are members of a class of PcG proteins that is distinct from previously described human PcG proteins. #
EEF1AKMT3
(details)
24936 EEF1A lysine methyltransferase 3 25895 Q96AZ1 EFMT3_HUMAN Methyltransf_16 PF10294 38-195 Eef1akmt3 3645330 D3YWP0 EFMT3_MOUSE METTL Methyltransferase like Protein modification Protein methylation 28108655 # protein Lys165 of eEF1A K165m 28108655 Modulates mRNA translation New
EEF1AKMT4
(details)
53611 EEF1A lysine methyltransferase 4 110599564 P0DPD7 EFMT4_HUMAN Methyltransf_11 PF08241 63-172 Eef1akmt4 5903914 P0DPE0 EFMT4_MOUSE # # Protein modification Protein methylation 28520920 # protein eEF1A (elongation factor alpha) methylation K36 28520920 Regulates interaction between eEF1A and aminoacyl-t-RNA and gene expression. New
EEF1AKNMT
(details)
24248 eEF1A lysine and N-terminal methyltransferase 51603 Q8N6R0 EFNMT_HUMAN domain PF13649 53-157, Spermine_synth PF01564 493-616 Eef1aknmt 1918699 Q91YR5 EFNMT_MOUSE METTL Methyltransferase like Protein modification Protein methylation 30143613 # protein Lys55 of eEF1A K55m 30143613 Modulates mRNA translation New
EHMT1
(details)
24650 euchromatic histone-lysine N-methyltransferase 1 79813 Q9H9B1 EHMT1_HUMAN EHMT1-2_CRR PF21533 539-633, Ank_4 PF13637 772-836, Ank_2 PF12796 838-904 907-990, Pre-SET PF05033 1015-1118, SET PF00856 1137-1243 Ehmt1 1924933 Q5DW34 EHMT1_MOUSE KMT, ANKRD Chromatin-modifying enzymes / K-methyltransferases, Ankyrin repeat domain containing Histone modification write Histone methylation 18264113 # histone H3K9 H3K9me1, H3K9me2 18264113 G9a and G9a-like protein (GLP)=EHMT1 are euchromatin-associated methyltransferases that repress transcription by mono- and dimethylating histone H3 at Lys9 (H3K9). #
EHMT2
(details)
14129 euchromatic histone-lysine N-methyltransferase 2 10919 Q96KQ7 EHMT2_HUMAN EHMT1-2_CRR PF21533 447-540, Ank_2 PF12796 655-746 750-816, Ank PF00023 850-882, Pre-SET PF05033 927-1030, SET PF00856 1049-1155 Ehmt2 2148922 Q9Z148 EHMT2_MOUSE KMT, ANKRD Chromatin-modifying enzymes / K-methyltransferases, Ankyrin repeat domain containing Histone modification write Histone methylation 18264113 # histone H3K9 H3K9me1, H3K9me2 18264113 G9a=EHMT2 and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by mono- and dimethylating histone H3 at Lys9 (H3K9). #
EID1
(details)
1191 EP300 interacting inhibitor of differentiation 1 23741 Q9Y6B2 EID1_HUMAN Eid1 1889651 Q9DCR4 EID1_MOUSE # # Histone modification write cofactor Histone acetylation 11073990 # histone # # 11073990 Inhibition of MyoD may be explained by EID-1's ability to bind and inhibit p300's histone acetylase activity, an essential MyoD coactivator. Thus, EID-1 binds both Rb and p300 and is a novel repressor of MyoD function. #
EID2
(details)
28292 EP300 interacting inhibitor of differentiation 2 163126 Q8N6I1 EID2_HUMAN Eid2 2681174 Q6X7S9 EID2_MOUSE # # Histone modification write cofactor Histone acetylation 14585496 # histone # # 14585496 Overexpression of EID-2 inhibits muscle-specific gene expression through inhibition of MyoD-dependent transcription. This inhibitory effect on gene expression can be explained by EID-2's ability to associate with and inhibit the acetyltransferase activity of p300. These data suggest that EID-1 and -2 represent a novel family of proteins that negatively regulate differentiation through a p300-dependent mechanism. #
EID2B
(details)
26796 EP300 interacting inhibitor of differentiation 2B 126272 Q96D98 EID2B_HUMAN Eid2b 1924095 # # # # Histone modification erase cofactor Histone acetylation 15970276 # histone # # 15970276 The transrepressional function of EID-2 depends on recruitment of class I histone deacetylases (HDACs). HDACs participate in the dynamic process of chromatin remodeling, forming corepressor complexes that repress transcription by deacetylating histones and transcription factors. #
EIF4A3
(details)
18683 Eukaryotic initiation factor 4A-III (eIF-4A-III) (eIF4A-III) (EC 3.6.4.13) (ATP-dependent RNA helicase DDX48) (ATP-dependent RNA helicase eIF4A-3) (DEAD box protein 48) (Eukaryotic initiation factor 4A-like NUK-34) (Eukaryotic translation initiation factor 4A isoform 3) (Nuclear matrix protein 265) (NMP 265) (hNMP 265) [Cleaved into: Eukaryotic initiation factor 4A-III, N-terminally processed] 9775 P38919 IF4A3_HUMAN DEAD PF00270 63-225, Helicase_C PF00271 264-372 EIf4A3 1923731 Q91VC3 IF4A3_MOUSE DDX DEAD-box helicases RNA modification Alternative splicing 22203037 # RNA mRNA # 22203037 Production of the proapoptotic Bcl-x(S) splice variant. New
ELP2
(details)
18248 elongator acetyltransferase complex subunit 2 55250 Q6IA86 ELP2_HUMAN WD40 PF00400 51-91 103-143 200-237 275-320 381-415 606-641 665-696 Elp2 1889642 Q91WG4 ELP2_MOUSE ELP, WDR Elongator acetyltransferase complex subunits, WD repeat domain containing Histone modification write cofactor Histone acetylation 11818576 Pol2 elongator histone # # 11818576 Acts as subunit of the RNA polymerase II elongator complex, which is a histone acetyltransferase component of the RNA polymerase II (Pol II) holoenzyme and is involved in transcriptional elongation. #
ELP3
(details)
20696 elongator acetyltransferase complex subunit 3 55140 Q9H9T3 ELP3_HUMAN Radical_SAM PF04055 107-295, Radical_SAM_C PF16199 312-392 Elp3 1921445 Q9CZX0 ELP3_MOUSE KAT, ELP Chromatin-modifying enzymes / K-acetyltransferases, Elongator acetyltransferase complex subunits Histone modification write Histone acetylation 11818576 Pol2 elongator histone H3, H4? # 11818576 Elp3 contains domains characteristic of proteins with acetyltransferase activity, and its complex was found to acetylate histones, with specificity to H3 and to a much lesser extent H4. #
ELP4
(details)
1171 elongator acetyltransferase complex subunit 4 26610 Q96EB1 ELP4_HUMAN PAXNEB PF05625 48-400 Elp4 1925016 Q9ER73 ELP4_MOUSE ELP Elongator acetyltransferase complex subunits Histone modification write cofactor Histone acetylation 11714725 Pol2 elongator histone # # 11714725 The three small holo-Elongator subunits, hELP4, p38, and p30, are required to activate the HAT activity of hELP3, or one of these proteins may have intrinsic HAT activity. #
ELP5
(details)
30617 elongator acetyltransferase complex subunit 5 23587 Q8TE02 ELP5_HUMAN Elong_Iki1 PF10483 11-181 222-281 Elp5 1859017 Q99L85 ELP5_MOUSE ELP Elongator acetyltransferase complex subunits Histone modification write cofactor Histone acetylation 11904415 Pol2 elongator histone H3K14, H4K8 # 11904415 The elongating, hyperphosphorylated form of RNA polymerase II is associated with the Elongator complex, which has the histone acetyltransferase (HAT) Elp3 as a subunit. The three smallest Elongator subunits--Elp4, Elp5, and Elp6--are required for HAT activity, and Elongator binds to both naked and nucleosomal DNA. Elongator may play a role in chromatin remodeling and is involved in acetylation of histones H3 and probably H4. #
ELP6
(details)
25976 elongator acetyltransferase complex subunit 6 54859 Q0PNE2 ELP6_HUMAN ELP6 PF09807 4-251 Elp6 1919349 Q8BK75 ELP6_MOUSE ELP Elongator acetyltransferase complex subunits Histone modification write cofactor Histone acetylation 22854966 Pol2 elongator histone # # 22854966 The Elongator complex is composed of 6 subunits (Elp1-Elp6) and promotes RNAPII transcript elongation through histone acetylation in the nucleus as well as tRNA modification in the cytoplasm. DERP6/ELP5 and C3ORF75/ELP6 are key players for migration, invasion and tumorigenicity of melanoma cells, as integral subunits of Elongator. #
ENY2
(details)
24449 enhancer of yellow 2 homolog (Drosophila) 56943 Q9NPA8 ENY2_HUMAN EnY2 PF10163 13-95 Eny2 1919286 Q9JIX0 ENY2_MOUSE # # Histone modification erase cofactor Histone ubiquitination 18206972 SAGA histone # # 18206972 ATXN7L3, USP22, and ENY2 are required as cofactors for the full transcriptional activity by nuclear receptors. Thus, the deubiquitinase activity of the TFTC/STAGA HAT complex is necessary to counteract heterochromatin silencing and acts as a positive cofactor for activation by nuclear receptors in vivo. #
EP300
(details)
3373 E1A binding protein p300 2033 Q09472 EP300_HUMAN zf-TAZ PF02135 335-415 1734-1806, KIX PF02172 567-648, Bromodomain PF00439 1067-1141, RING_CBP-p300 PF06001 1156-1194, HAT_KAT11 PF08214 1306-1611, ZZ PF00569 1665-1706, Creb_binding PF09030 2015-2097 Ep300 1276116 B2RWS6 EP300_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 17065153 # histone H2A, H2B, H3, H4 # 17065153 Acetylation of proteins by p300=EP300 histone acetyltransferase plays a critical role in the regulation of gene expression. #
EP400
(details)
11958 E1A binding protein p400 57634 Q96L91 EP400_HUMAN EP400_N PF15790 30-489, HSA PF07529 803-869 2178-2241, SNF2-rel_dom PF00176 1094-1372, Helicase_C PF00271 1899-2012 Ep400 1276124 Q8CHI8 EP400_MOUSE # # Chromatin remodeling, Histone modification write Histone acetylation 20876283 SWR, NuA4, NuA4-related complex histone # # 20876283 p400 is a novel DNA damage response protein and p400-mediated alterations in nucleosome and chromatin structure promote both chromatin ubiquitination and the accumulation of brca1 and 53BP1 at sites of DNA damage. #
EPC1
(details)
19876 enhancer of polycomb homolog 1 (Drosophila) 80314 Q9H2F5 EPC1_HUMAN EPL1 PF10513 6-148, E_Pc_C PF06752 581-836 Epc1 1278322 Q8C9X6 EPC1_MOUSE # # Polycomb group (PcG) protein # 14966270 NuA4, Piccolo_NuA4, NuA4-related complex histone # # 14966270 The Enhancer of Polycomb homology domain of human EPC1, like Epl1 in yeast (7), is a conserved functional key for histone acetylation since it bridges the MYST HAT with the ING protein to enable potent nucleosome histone acetyltransferase activity. #
EPC2
(details)
24543 enhancer of polycomb homolog 2 (Drosophila) 26122 Q52LR7 EPC2_HUMAN EPL1 PF10513 4-148, E_Pc_C PF06752 575-807 Epc2 1278321 Q8C0I4 EPC2_MOUSE # # Chromatin remodeling # 19898529 # chromatin # # # NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components #
ERBB4
(details)
3432 v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 2066 Q15303 ERBB4_HUMAN Recep_L_domain PF01030 55-166 358-477, Furin-like PF00757 184-335, GF_recep_IV PF14843 502-633, TM_ErbB1 PF21314 653-687, PK_Tyr_Ser-Thr PF07714 718-974 Erbb4 104771 Q61527 ERBB4_MOUSE # # Histone modification cofactor # 23230144 # histone H3K9me3 # 23230144 ErbB4 intracellular domain (4ICD) that translocates into the nucleus to control gene expression through inhibiting an increase of H3K9me3. #
ERCC6
(details)
3438 excision repair cross-complementation group 6 2074 Q03468 ERCC6_HUMAN SNF2-rel_dom PF00176 509-810, Helicase_C PF00271 843-952 Ercc6 1100494 # # # # Chromatin remodeling # 15226310 B-WICH chromatin # # 15226310 CSB=ERCC6 is a DNA-dependent ATPase and is able to remodel chromatin at the expense of ATP. #
EXOSC1
(details)
17286 exosome component 1 51013 Q9Y3B2 EXOS1_HUMAN ECR1_N PF14382 8-43, EXOSC1 PF10447 95-135 Exosc1 1913833 Q9DAA6 EXOS1_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC2
(details)
17097 exosome component 2 23404 Q13868 EXOS2_HUMAN ECR1_N PF14382 26-64, RRP4_S1 PF21266 75-146, KH_6 PF15985 169-210 Exosc2 2385133 Q8VBV3 EXOS2_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC3
(details)
17944 exosome component 3 51010 Q9NQT5 EXOS3_HUMAN RRP40_N_mamm PF21261 26-106, RRP40_S1 PF21262 108-191, KH_6 PF15985 197-244 Exosc3 1913612 Q7TQK4 EXOS3_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC4
(details)
18189 exosome component 4 54512 Q9NPD3 EXOS4_HUMAN RNase_PH PF01138 21-152, RNase_PH_C PF03725 155-219 Exosc4 1923576 Q921I9 EXOS4_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC5
(details)
24662 exosome component 5 56915 Q9NQT4 EXOS5_HUMAN RNase_PH PF01138 28-147, RNase_PH_C PF03725 151-215 Exosc5 107889 Q9CRA8 EXOS5_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC6
(details)
19055 exosome component 6 118460 Q5RKV6 EXOS6_HUMAN RNase_PH PF01138 37-175 Exosc6 1919794 Q8BTW3 EXOS6_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC7
(details)
28112 exosome component 7 23016 Q15024 EXOS7_HUMAN RNase_PH PF01138 32-166, RNase_PH_C PF03725 196-261 Exosc7 1913696 Q9D0M0 EXOS7_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC8
(details)
17035 exosome component 8 11340 Q96B26 EXOS8_HUMAN RNase_PH PF01138 31-166, RNase_PH_C PF03725 192-257 Exosc8 1916889 Q9D753 EXOS8_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EXOSC9
(details)
9137 exosome component 9 5393 Q06265 EXOS9_HUMAN RNase_PH PF01138 32-163, RNase_PH_C PF03725 189-254 Exosc9 1355319 Q9JHI7 EXOS9_MOUSE # # Scaffold protein, RNA modification RNA degradation 17174896 RNA exosome RNA # # 17174896 RNA abundance is regulated by balancing transcription and RNA degradation, processes that control the temporal and spatial distribution of cellular RNA. After decapping, 5′ to 3′ RNA degradation is accomplished by Xrn1, a 5′ to 3′ exoribonuclease. In the 3′ to 5′ pathway, RNA degradation is catalyzed by a multisubunit 3′ to 5′ exoribonuclease complex termed the RNA exosome. Three additional exosome subunits, Csl4=EXOSC1, Rrp4=EXOSC2, and Rrp40=EXOSC3, include S1 or KH domains, which are postulated to bind RNA. #
EYA1
(details)
3519 EYA transcriptional coactivator and phosphatase 1 2138 Q99502 EYA1_HUMAN Hydrolase PF00702 323-566 Eya1 109344 P97767 EYA1_MOUSE PTPE Protein tyrosine phosphatases / Asp-based PTPs Histone modification erase Histone phosphorylation 19234442 # histone H2AXT142 # 19234442 Eya effectively removes the phosphotyrosine mark from H2AX, while the phosphatase-inactive mutant Eya proteins (Eya1 D323A or Eya3 D246A) have little or no effect. #
EYA2
(details)
3520 EYA transcriptional coactivator and phosphatase 2 2139 O00167 EYA2_HUMAN Hydrolase PF00702 269-512 Eya2 109341 O08575 EYA2_MOUSE PTPE Protein tyrosine phosphatases / Asp-based PTPs Histone modification erase Histone phosphorylation 19351884 # histone H2AXT142 # 19351884 EYA2 and EYA3 display specificity (dephosphorylation) for Tyr-142 of H2A.X in assays in vitro. #
EYA3
(details)
3521 EYA transcriptional coactivator and phosphatase 3 2140 Q99504 EYA3_HUMAN Hydrolase PF00702 304-548 Eya3 109339 P97480 EYA3_MOUSE PTPE Protein tyrosine phosphatases / Asp-based PTPs Histone modification erase Histone phosphorylation 19351884 # histone H2AXT142 # 19351884 EYA2 and EYA3 display specificity (dephosphorylation) for Tyr-142 of H2A.X in assays in vitro. #
EYA4
(details)
3522 EYA transcriptional coactivator and phosphatase 4 2070 O95677 EYA4_HUMAN Hydrolase PF00702 370-614 Eya4 1337104 Q9Z191 EYA4_MOUSE PTPE Protein tyrosine phosphatases / Asp-based PTPs Histone modification erase Histone phosphorylation # # histone H2AXY142ph H2AXY142 24096489 In response to double-stranded breaks, EYA4 dephosphorylates the Tyr-142 residue of H2AX facilitating phosphorylation of Ser-139 of H2AX (forming γH2AX), leading to the recruitment of DNA repair complex components to sites of double-stranded break. #
EZH1
(details)
3526 enhancer of zeste 1 polycomb repressive complex 2 subunit 2145 Q92800 EZH1_HUMAN EZH2_WD-Binding PF11616 39-68, PRC2_HTH_1 PF18118 160-262, Ezh2_MCSS PF21358 267-322, preSET_CXC PF18264 560-591, SET PF00856 624-727 Ezh1 1097695 P70351 EZH1_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write, Polycomb group (PcG) protein Histone methylation 19026781 PRC2 histone H3K27 H3K27me1, H3K27me2, H3K27me3 19026781 Polycomb group proteins are critical to maintaining gene repression established during Drosophila development. Part of this group forms the PRC2 complex containing Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription. The mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes but exhibit contrasting repressive roles. While PRC2-Ezh2 catalyzes H3K27me2/3 and its knockdown affects global H3K27me2/3 levels, PRC2-Ezh1 performs this function weakly. #
EZH2
(details)
3527 enhancer of zeste 2 polycomb repressive complex 2 subunit 2146 Q15910 EZH2_HUMAN EZH2_WD-Binding PF11616 39-68, PRC2_HTH_1 PF18118 159-249, Ezh2_MCSS PF21358 259-309, preSET_CXC PF18264 559-590, SET PF00856 623-726 Ezh2 107940 Q61188 EZH2_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write, Polycomb group (PcG) protein Histone methylation 19026781 PRC2 histone H3K27 H3K27me1, H3K27me2, H3K27me3 19026781 Polycomb group proteins are critical to maintaining gene repression established during Drosophila development. Part of this group forms the PRC2 complex containing Ez that catalyzes di- and trimethylation of histone H3 lysine 27 (H3K37me2/3), marks repressive to transcription. The mammalian homologs Ezh1 and Ezh2 form similar PRC2 complexes, but exhibit contrasting repressive roles. While PRC2-Ezh2 catalyzes H3K27me2/3 and its knockdown affects global H3K27me2/3 levels, PRC2-Ezh1 performs this function weakly. #
FAM175A
(details)
25829 family with sequence similarity 175, member A 84142 Q6UWZ7 F175A_HUMAN MPN_2A_DUB_like PF21125 9-172 Fam175a 1917931 Q8BPZ8 F175A_MOUSE # # Scaffold protein # 19261749 BRCA1-A TF # # 19261749 Abra1=FAM175A protein, which appears to act as a scaffold for the A complex. Abra1 is known to mediate the interaction of Rap80 with BRCA1. #
FAM175B
(details)
28975 family with sequence similarity 175, member B 23172 Q15018 F175B_HUMAN MPN_2A_DUB_like PF21125 3-167 Fam175b 1926116 Q3TCJ1 F175B_MOUSE # # Histone modification erase cofactor Histone ubiquitination 20656690 BRISC histone H2AK63 H2AK63ub 20656690 # #
FBL
(details)
3599 fibrillarin 2091 P22087 FBRL_HUMAN Fibrillarin PF01269 88-314 Fbl 95486 P35550 FBRL_MOUSE # # Histone modification write Histone methylation 24352239 # histone H2AQ104 H2AQ104me 24352239 Nop1 is a methyltransferase in yeast, and fibrillarin is the orthologue enzyme in human cells. The modification is exclusively enriched over the 35S ribosomal DNA transcriptional unit. Glutamine methylation of H2A is the first histone epigenetic mark dedicated to a specific RNA polymerase and define its function as a regulator of FACT interaction with nucleosomes. #
FBRS
(details)
20442 fibrosin 64319 Q9HAH7 FBRS_HUMAN Auts2 PF15336 82-273 Fbrs 104648 Q8R089 FBRS_MOUSE # # Histone modification # 24217316, 22325352 RING2-FBRS histone # # 24217316, 22325352 Part of a RING2 complex. #
FBRSL1
(details)
29308 fibrosin-like 1 57666 Q9HCM7 FBSL_HUMAN Auts2 PF15336 587-788 Fbrsl1 1920907 # # # # Histone modification # 24217316, 22325352 RING2-FBRS histone # # 24217316, 22325352 Part of a RING2 complex. #
FOXA1
(details)
5021 forkhead box A1 3169 P55317 FOXA1_HUMAN Forkhead_N PF08430 16-169, Forkhead PF00250 170-255, HNF_C PF09354 396-455 Foxa1 1347472 P35582 FOXA1_MOUSE FOX Forkhead boxes Chromatin remodeling, TF # 22406422 # chromatin, DNA DNA motif # # FOXA1 functions in organizing nucleosome positioning. #
FOXO1
(details)
3819 forkhead box O1 2308 Q12778 FOXO1_HUMAN Forkhead PF00250 160-244, FOXO_KIX_bdg PF16675 430-506, FOXO-TAD PF16676 597-635 Foxo1 1890077 Q9R1E0 FOXO1_MOUSE FOX Forkhead boxes TF # 22406422 # histone, DNA DNA motif, H3, H4 # # FOXO1 interacts with core histones H3 and H4. #
FOXP1
(details)
3823 forkhead box P1 27086 Q9H334 FOXP1_HUMAN FOXP-CC PF16159 302-370, Forkhead PF00250 465-541 Foxp1 1914004 P58462 FOXP1_MOUSE FOX Forkhead boxes TF # 22406422 # histone, DNA DNA motif # # Recruitment of specific chromatin-modifying complexes with HDAC activity. #
FOXP2
(details)
13875 forkhead box P2 93986 O15409 FOXP2_HUMAN FOXP-CC PF16159 342-410, Forkhead PF00250 504-581 Foxp2 2148705 P58463 FOXP2_MOUSE FOX Forkhead boxes TF # 22406422 # histone, DNA DNA motif # # Recruitment of specific chromatin-modifying complexes with HDAC activity. #
FOXP3
(details)
6106 forkhead box P3 50943 Q9BZS1 FOXP3_HUMAN FOXP-CC PF16159 193-263, Forkhead PF00250 337-414 Foxp3 1891436 Q99JB6 FOXP3_MOUSE FOX Forkhead boxes TF # 22406422 # histone, DNA DNA motif # # Recruitment of specific chromatin-modifying complexes with HDAC activity. #
FOXP4
(details)
20842 forkhead box P4 116113 Q8IVH2 FOXP4_HUMAN FOXP-CC PF16159 305-371, Forkhead PF00250 467-544 Foxp4 1921373 Q9DBY0 FOXP4_MOUSE FOX Forkhead boxes TF # 22406422 # histone, DNA DNA motif # # Recruitment of specific chromatin-modifying complexes with HDAC activity. #
FTO
(details)
24678 FTO alpha-ketoglutarate dependent dioxygenase 79068 Q9C0B1 FTO_HUMAN FTO_NTD PF12933 37-325, FTO_CTD PF12934 329-496 Fto 1347093 Q8BGW1 FTO_MOUSE ALKBH Alkylation repair homologs RNA modification RNA demethylation 23653210 # RNA m6A of mRNA hm6A, f6A, A 3218240 # New
GADD45A
(details)
4095 growth arrest and DNA-damage-inducible, alpha 1647 P24522 GA45A_HUMAN Ribosomal_L7Ae PF01248 21-114 Gadd45a 107799 P48316 GA45A_MOUSE # # Chromatin remodeling # 21986581 # histone H2A, H2B, H3, H4 # 21986581 Active DNA demethylation is partially attributed to the ability of Gadd45(A, B, C) proteins to bind histones and modify accessibility of DNA on damaged chromatin. #
GADD45B
(details)
4096 growth arrest and DNA-damage-inducible, beta 4616 O75293 GA45B_HUMAN Ribosomal_L7Ae PF01248 22-116 Gadd45b 107776 P22339 GA45B_MOUSE # # Chromatin remodeling # 21986581 # histone H2A, H2B, H3, H4 # 21986581 Active DNA demethylation is partially attributed to the ability of Gadd45(A, B, C) proteins to bind histones and modify accessibility of DNA on damaged chromatin. #
GADD45G
(details)
4097 growth arrest and DNA-damage-inducible, gamma 10912 O95257 GA45G_HUMAN Ribosomal_L7Ae PF01248 25-106 Gadd45g 1346325 Q9Z111 GA45G_MOUSE # # Chromatin remodeling # 21986581 # histone H2A, H2B, H3, H4 # 21986581 Active DNA demethylation is partially attributed to the ability of Gadd45(A, B, C) proteins to bind histones and modify accessibility of DNA on damaged chromatin. #
GATAD1
(details)
29941 GATA zinc finger domain containing 1 57798 Q8WUU5 GATD1_HUMAN Gatad1 1914460 Q920S3 GATD1_MOUSE GATAD GATA zinc finger domain containing Histone modification read # 20850016 # histone H3K4me3 # # GATA zinc finger domain containing 1 (GATAD1) has been identified as a H3K4me3 interactor. #
GATAD2A
(details)
29989 GATA zinc finger domain containing 2A 54815 Q86YP4 P66A_HUMAN P66_CC PF16563 137-179, GATA PF00320 417-451 Gatad2a 2384585 Q8CHY6 P66A_MOUSE GATAD GATA zinc finger domain containing Histone modification read # 16415179 NuRD histone H2A, H2B, H3, H4 # 16415179 In vitro translated p66α=GATAD2A and p66β showed a strong affinity for all histone tails tested. #
GATAD2B
(details)
30778 GATA zinc finger domain containing 2B 57459 Q8WXI9 P66B_HUMAN P66_CC PF16563 158-199, GATA PF00320 420-454 Gatad2b 2443225 Q8VHR5 P66B_MOUSE GATAD GATA zinc finger domain containing Histone modification read # 16415179 NuRD histone H2A, H2B, H3, H4 # 16415179 In vitro translated p66α and p66β=GATAD2B showed a strong affinity for all histone tails tested. #
GFI1
(details)
4237 growth factor independent 1 transcription repressor 2672 Q99684 GFI1_HUMAN zf-C2H2 PF00096 255-278 284-306 312-334 340-362 368-390 396-419 Gfi1 103170 P70338 GFI1_MOUSE ZNF Zinc fingers, C2H2-type Chromatin remodeling # 16287849 # # # # # Gfi1 coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. #
GFI1B
(details)
4238 growth factor independent 1B transcription repressor 8328 Q5VTD9 GFI1B_HUMAN zf-C2H2 PF00096 163-186 192-214 220-242 248-270 276-298 304-327 Gfi1b 1276578 O70237 GFI1B_MOUSE ZNF Zinc fingers, C2H2-type Histone modification cofactor # 24395799 # # # # # The principal hematopoietic regulator T-cell acute lymphocytic leukemia-1 (TAL1) is involved in regulating H3K27me3 variations in collaboration with the transcription factor growth factor independent 1B (GFI1B). #
GLYR1
(details)
24434 glyoxylate reductase 1 homolog (Arabidopsis) 84656 Q49A26 GLYR1_HUMAN PWWP PF00855 8-89, NAD_binding_2 PF03446 269-425, NAD_binding_11 PF14833 431-551 Glyr1 1921272 Q922P9 GLYR1_MOUSE # # Histone modification read # 20850016 # histone H3K4me3 # 20850016 N-PAC=GLYR1, MSH-6, and NSD1 as well as NSD2 were identified as H3K36me3 interactors (Figure 1C; Table S2). Interestingly, these four proteins share a PWWP domain which is part of the Tudor domain “Royal Family” and includes the Tudor, chromo and MBT domains that can interact with methylated lysine residues. #
GSE1
(details)
28979 Gse1 coiled-coil protein 23199 Q14687 GSE1_HUMAN DUF3736 PF12540 718-861 Gse1 1098275 Q3U3C9 GSE1_MOUSE # # Histone modification erase Histone acetylation 8724849 BHC, LSD-CoREST RNA # # 8724849 A novel repeat composed of alternating Arg and Glu (RE repeat) was observed in KIAA0182. Alternating Arg-Asp tracts have been found in many RNA-binding proteins as a characteristic sequence. The presence of the RE repeat with structural similarity to the RD repeat strongly suggests that KIAA0182=GSE1 exhibits an RNA-binding activity. #
GSG2
(details)
19682 germ cell associated 2 (haspin) 83903 Q8TF76 HASP_HUMAN Haspin_kinase PF12330 420-783 Gsg2 1194498 Q9Z0R0 HASP_MOUSE # # Histone modification write Histone phosphorylation 20705812 # histone H3T3 H3T3ph 20705812 Phosphorylation of histone H3 threonine 3 (H3T3ph) by Haspin=GSG2 is necessary for CPC accumulation at centromeres and that CPC subunit Survivin binds directly to H3T3ph. #
GTF2I
(details)
4659 general transcription factor IIi 2969 P78347 GTF2I_HUMAN GTF2I PF02946 112-188 360-436 465-541 569-647 733-809 868-942 Gtf2i 1202722 Q9ESZ8 GTF2I_MOUSE # # TF # 9334314 BHC DNA DNA motif # # Added because it is a complex partner. #
GTF3C4
(details)
4667 general transcription factor IIIC, polypeptide 4, 90kDa 9329 Q9UKN8 TF3C4_HUMAN TFIIIC_delta PF12657 61-517, DUF5921 PF19336 516-592, zf-TFIIIC PF12660 741-789 Gtf3c4 2138937 Q8BMQ2 TF3C4_MOUSE KAT, GTF Chromatin-modifying enzymes / K-acetyltransferases, General transcription factors Histone modification write Histone acetylation 10523658 # histone H3 # 10523658 hTFIIIC90=GTF3C4 has an intrinsic histone acetyltransferase activity with a substrate specificity for histone H3. #
HAT1
(details)
4821 histone acetyltransferase 1 8520 O14929 HAT1_HUMAN Hat1_N PF10394 26-187, HAT1_C PF21183 287-337 Hat1 96013 Q8BY71 HAT1_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 9427644 # histone H4, H2A # 9427644 The human holoenzyme consists of two subunits: a catalytic subunit, Hat1, and a subunit that binds core histones, p46, which greatly stimulates the acetyltransferase activity of Hat1. On the other hand, given that the Hat1 holoenzyme bound weakly to H2A and also acetylated the H2A #
HCFC1
(details)
4839 host cell factor C1 3054 P51610 HCFC1_HUMAN Kelch_1 PF01344 32-69, Kelch_5 PF13854 78-114 319-361, Kelch_3 PF13415 216-263 Hcfc1 105942 Q61191 HCFC1_MOUSE # # Chromatin remodeling # 12670868 NSL, COMPASS, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7 chromatin # # 12670868 A series of molecular activities are associated with the N-terminal subunit of HCF-1 in HSV uninfected cells. Two of these activities are associated with opposing roles in the regulation of transcription through the modulation of chromatin structure: Sin3 HDAC and a novel human Set1/Ash2 HMT. #
HCFC2
(details)
24972 host cell factor C2 29915 Q9Y5Z7 HCFC2_HUMAN Kelch_1 PF01344 22-60, Kelch_5 PF13854 69-104 312-354, Kelch_3 PF13415 207-253 Hcfc2 1915183 Q9D968 HCFC2_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 15199122 MLL-HCF, CHD8, MLL2/3, MLL4/WBP7 histone H3 # 15199122 HCF-2 (HCFC2), which specifically interact with a conserved binding motif in the MLL(N) (p300) subunit of MLL (histone methyltransferase ) and provide a potential mechanism for regulating its antagonistic transcriptional properties. #
HDAC1
(details)
4852 histone deacetylase 1 3065 Q13547 HDAC1_HUMAN Hist_deacetyl PF00850 28-318 Hdac1 108086 O09106 HDAC1_MOUSE # # Histone modification erase Histone acetylation 10220385 SWI/SNF_Brm, NuRD, BHC, MeCP1, mSin3A, core HDAC, mSin3A-like complex, RING2-L3MBTL2, CREST-BRG1, LSD-CoREST histone H3, H4 # 10220385 HDAC1, HDAC4, HDAC5, and HDAC6 deacetylate all four core histones equally well, though deacetylation by HDAC4 and HDAC5 is incomplete. #
HDAC10
(details)
18128 histone deacetylase 10 83933 Q969S8 HDA10_HUMAN Hist_deacetyl PF00850 24-321 Hdac10 2158340 Q6P3E7 HDA10_MOUSE # # Histone modification erase Histone acetylation 11861901 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 11861901 HDAC10 can deacetylate histones. #
HDAC11
(details)
19086 histone deacetylase 11 79885 Q96DB2 HDA11_HUMAN Hist_deacetyl PF00850 35-318 Hdac11 2385252 Q91WA3 HDA11_MOUSE # # Histone modification erase Histone acetylation 9346952 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 9346952 HDAC11 is a bona fide histone deacetylase. #
HDAC2
(details)
4853 histone deacetylase 2 3066 Q92769 HDAC2_HUMAN Hist_deacetyl PF00850 29-319 Hdac2 1097691 P70288 HDAC2_MOUSE # # Histone modification erase Histone acetylation 9346952 SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, NuRD, BHC, MeCP1, mSin3A, core HDAC, mSin3A-like complex, RING2-L3MBTL2, LSD-CoREST histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 9346952 HDAC1, HDAC2, and HDAC3 constitute a human HDAC family. All three proteins possess histone deacetylase activity, and repress transcription when bound to a promoter. #
HDAC3
(details)
4854 histone deacetylase 3 8841 O15379 HDAC3_HUMAN Hist_deacetyl PF00850 22-313 Hdac3 1343091 O88895 HDAC3_MOUSE # # Histone modification erase Histone acetylation 10655483 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 10655483 HDAC1, HDAC2, and HDAC3 constitute a human HDAC family. All three proteins possess histone deacetylase activity, and repress transcription when bound to a promoter. #
HDAC4
(details)
14063 histone deacetylase 4 9759 P56524 HDAC4_HUMAN HDAC4_Gln PF12203 63-153, Hist_deacetyl PF00850 675-992 Hdac4 3036234 Q6NZM9 HDAC4_MOUSE # # Histone modification erase Histone acetylation 10220385 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 10220385 HDAC1, HDAC4, HDAC5, and HDAC6 deacetylate all four core histones equally well, though deacetylation by HDAC4 and HDAC5 is incomplete. #
HDAC5
(details)
14068 histone deacetylase 5 10014 Q9UQL6 HDAC5_HUMAN HDAC4_Gln PF12203 67-162, Hist_deacetyl PF00850 704-1022 Hdac5 1333784 Q9Z2V6 HDAC5_MOUSE # # Histone modification erase Histone acetylation 10220385 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 10220385 HDAC1, HDAC4, HDAC5, and HDAC6 deacetylate all four core histones equally well, though deacetylation by HDAC4 and HDAC5 is incomplete. #
HDAC6
(details)
14064 histone deacetylase 6 10013 Q9UBN7 HDAC6_HUMAN Hist_deacetyl PF00850 106-402 499-798, zf-UBP PF02148 1132-1193 Hdac6 1333752 Q9Z2V5 HDAC6_MOUSE # # Histone modification erase Histone acetylation 10220385 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 10220385 HDAC1, HDAC4, HDAC5, and HDAC6 deacetylate all four core histones equally well, though deacetylation by HDAC4 and HDAC5 is incomplete. (HDAC6 is possibly not involved in epigenetic signalling, but it deacetylates microtubules and heat shock protein 90; PMID:22498752) #
HDAC7
(details)
14067 histone deacetylase 7 51564 Q8WUI4 HDAC7_HUMAN Hist_deacetyl PF00850 541-858 Hdac7 1891835 Q8C2B3 HDAC7_MOUSE # # Histone modification erase Histone acetylation 18285338 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 18285338 The isolated and purified catalytic domain of the human class IIa HDAC, cdHDAC7, has an intrinsic low level of deacetylase activity in the absence of any complex partner which can be inhibited by known HDAC inhibitors such as the hydroxamic acid TSA. It has been showen that the isolated catalytic domain of class IIa HDACs have weak but measurable intrinsic catalytic activity on chemically acetylated core histones. #
HDAC8
(details)
13315 histone deacetylase 8 55869 Q9BY41 HDAC8_HUMAN Hist_deacetyl PF00850 33-320 Hdac8 1917565 Q8VH37 HDAC8_MOUSE # # Histone modification erase Histone acetylation 10748112 # histone H2AKac, H2BKac, H3Kac, H4Kac H2AK, H2BK, H3K, H4K 10748112 HDAC8 exhibited deacetylase activity toward acetylated histone, indicating that this protein is a bona fide histone deacetylase. #
HDAC9
(details)
14065 histone deacetylase 9 9734 Q9UKV0 HDAC9_HUMAN HDAC4_Gln PF12203 37-119, Hist_deacetyl PF00850 654-972 Hdac9 1931221 Q99N13 HDAC9_MOUSE # # Histone modification erase Histone acetylation 12590135 # histone H3Kac, H4Kac H3K, H4K 12590135 A new member of the Class II HDAC family, HDAC9. The enzyme contains a conserved deacetylase domain, represses reporter activity when recruited to a promoter, and utilizes histones H3 and H4 as substrates in vitro and in vivo. #
HDGF
(details)
4856 hepatoma-derived growth factor 3068 P51858 HDGF_HUMAN PWWP PF00855 13-93 Hdgf 1194494 P51859 HDGF_MOUSE # # Chromatin remodeling, TF TF repressor 18331345, 17974029 # DNA DNA motif # 18331345 SUMOylated HDGF is not bound to chromatin. #
HDGFL2
(details)
14680 HDGF like 2 84717 Q7Z4V5 HDGR2_HUMAN PWWP PF00855 7-86, LEDGF PF11467 472-568 Hdgfrp2 1194492 Q3UMU9 HDGR2_MOUSE # # Histone modification read # 217205545 # histone H3K79me3, H4K20me3, H3K36me3 # 217205545 The crystal structures of the PWWP domains from seven different human proteins and three PWWP domain complex structures with histone peptides, i.e., BRPF1-H3K36me3, HDGF2-H3K79me3 and HDGF2-H4K20me3 shows that the PWWP domain can not only bind DNA but also histones. #
HELLS
(details)
4861 helicase, lymphoid-specific 3070 Q9NRZ9 HELLS_HUMAN SNF2-rel_dom PF00176 226-576, Helicase_C PF00271 600-712 Hells 106209 Q60848 HELLS_MOUSE # # Chromatin remodeling # 14612388 # chromatin # # 14517253, 14612388 Lymphoid-specific helicase (Lsh=HELLS) is another member of the SNF2 family of chromatin remodeling proteins. #
HIF1AN
(details)
17113 hypoxia inducible factor 1, alpha subunit inhibitor 55662 Q9NWT6 HIF1N_HUMAN Cupin_8 PF13621 51-299 Hif1an 2442345 Q8BLR9 HIF1N_MOUSE # # Histone modification erase cofactor Histone acetylation 11641274 # histone # # 11641274 VHL and FIH-1=HIF1AN interact with histone deacetylases in vitro. #
HINFP
(details)
17850 histone H4 transcription factor 25988 Q9BQA5 HINFP_HUMAN zf-C2H2_4 PF13894 229-251, zf-C2H2 PF00096 255-278 345-368 Hinfp 2429620 Q8K1K9 HINFP_MOUSE ZNF Zinc fingers, C2H2-type Histone modification read, TF TF activator, TF repressor 14585971 # histone, DNA H4, DNA motif # 14585971 HiNF-P interacts with conserved H4 cell cycle regulatory sequences in vivo. #
HIRA
(details)
4916 histone cell cycle regulator 7290 P54198 HIRA_HUMAN WD40 PF00400 9-44 64-97 122-159 166-201, Hira PF07569 764-962 Hira 99430 Q61666 HIRA_MOUSE WDR WD repeat domain containing Histone modification read # 9710638 # histone H2B, H4 # 9710638 HIRA interacts with core histone H4. H2B- and H4-binding domains are overlapping but distinguishable in the carboxy-terminal region of HIRA, and the region for HIRA interaction has been mapped to the amino-terminal tail of H2B and the second alpha helix of H4. #
HIRIP3
(details)
4917 HIRA interacting protein 3 8479 Q9BW71 HIRP3_HUMAN CHZ PF09649 486-556 Hirip3 2142364 Q8BLH7 HIRP3_MOUSE # # Histone modification read # 9710638 # histone H2A, H3 # 9710638 In vitro, HIRIP3 directly interacted with HIRA but also with core histones H2B and H3, suggesting that a HIRA-HIRIP3-containing complex could function in some aspects of chromatin and histone metabolism. #
HJURP
(details)
25444 Holliday junction recognition protein 55355 Q8NCD3 HJURP_HUMAN Scm3 PF10384 11-71, HJURP_mid PF12346 123-391, HJURP_C PF12347 416-466 560-620 Hjurp 2685821 Q6PG16 HJURP_MOUSE # # Histone chaperone # 21478274 # histone H4 # 21478274 Deposition of CENP-A to the centromere requires histone chaperone HJURP (Holliday junction recognition protein). The crystal structure of an HJURP–CENP-A–histone H4 complex shows that HJURP binds a CENP-A–H4 heterodimer. #
HLCS
(details)
4976 holocarboxylase synthetase (biotin-(proprionyl-CoA-carboxylase (ATP-hydrolysing)) ligase) 3141 P50747 BPL1_HUMAN BPL_LplA_LipB PF03099 472-603, BPL_C PF02237 669-716 Hlcs 894646 Q920N2 BPL1_MOUSE # # Histone modification write # 14613969 # histone H1, H2A, H2B, H4 # 14613969 Nuclear HCS =HLCS retains its biotinylating activity and has been shown to biotinylate purified histones in vitro. #
HLTF
(details)
11099 helicase-like transcription factor 6596 Q14527 HLTF_HUMAN HIRAN PF08797 61-154, SNF2-rel_dom PF00176 242-720, zf-C3HC4_2 PF13923 760-800, Helicase_C PF00271 834-950 Hltf 1196437 Q6PCN7 HLTF_MOUSE RNF RING-type (C3HC4) zinc fingers Chromatin remodeling cofactor # 18719106 # chromatin # # 18719106 Acts as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. #
HMG20A
(details)
5001 high mobility group 20A 10363 Q9NP66 HM20A_HUMAN HMG_box PF00505 103-170 Hmg20a 1914117 Q9DC33 HM20A_MOUSE HMGX High mobility group / Non-canonical Chromatin remodeling cofactor # 24227653 LSD-CoREST histone H3K4 # 24227653 Involved in the recruitment of the histone methyltransferase KMT2A/MLL1 and consequent increased methylation of histone H3 lysine 4. #
HMG20B
(details)
5002 high mobility group 20B 10362 Q9P0W2 HM20B_HUMAN HMG_box PF00505 70-138 Hmg20b 1341190 Q9Z104 HM20B_MOUSE HMGX High mobility group / Non-canonical Chromatin remodeling # 11997092 BHC, LSD-CoREST DNA # # 11997092 The high-mobility-group (HMG) proteins are chromatin-associated proteins that are common to all higher organisms. They bind DNA in a sequence-specific or non-sequence-specific way to induce DNA bending, and regulate chromatin function and gene expression. #
HMGB1
(details)
4983 high mobility group box 1 3146 P09429 HMGB1_HUMAN HMG_box_2 PF09011 6-79, HMG_box PF00505 95-163 Hmgb1 96113 P63158 HMGB1_MOUSE HMG High-mobility group / Canonical Chromatin remodeling # 19158276 # chromatin # # # Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. #
HMGN1
(details)
4984 high mobility group nucleosome binding domain 1 3150 P05114 HMGN1_HUMAN HMG14_17 PF01101 2-96 Hmgn1 96120 P18608 HMGN1_MOUSE HMG High-mobility group / Canonical Chromatin remodeling # 22395460, 20123071 # histone H1 # # HMGB1-4 proteins are believed to dock to the H1 linker. #
HMGN2
(details)
4986 high mobility group nucleosomal binding domain 2 3151 P05204 HMGN2_HUMAN HMG14_17 PF01101 2-89 Hmgn2 96136 P09602 HMGN2_MOUSE HMG High-mobility group / Canonical Chromatin remodeling # 22395460, 20123071 # histone H1 # # HMGB1-4 proteins are believed to dock to the H1 linker. #
HMGN3
(details)
12312 high mobility group nucleosomal binding domain 3 9324 Q15651 HMGN3_HUMAN HMG14_17 PF01101 2-95 Hmgn3 2138069 Q9DCB1 HMGN3_MOUSE HMG High-mobility group / Canonical Chromatin remodeling # 22395460, 20123071 # histone H1 # # HMGB1-4 proteins are believed to dock to the H1 linker. #
HMGN4
(details)
4989 high mobility group nucleosomal binding domain 4 10473 O00479 HMGN4_HUMAN HMG14_17 PF01101 2-89 # # # # HMG High-mobility group / Canonical Chromatin remodeling # 22395460, 20123071 # histone H1 # # HMGB1-4 proteins are believed to dock to the H1 linker. #
HMGN5
(details)
8013 high mobility group nucleosome binding domain 5 79366 P82970 HMGN5_HUMAN HMG14_17 PF01101 1-112 Hmgn5 1355295 Q9JL35 HMGN5_MOUSE HMG High-mobility group / Canonical Chromatin remodeling # 22395460, 20123071 # histone H1 # # HMGB1-4 proteins are believed to dock to the H1 linker. #
HNRNPU
(details)
5048 Heterogeneous nuclear ribonucleoprotein U (hnRNP U) (GRIP120) (Nuclear p120 ribonucleoprotein) (Scaffold-attachment factor A) (SAF-A) (p120) (pp120) 3192 Q00839 HNRPU_HUMAN SAP PF02037 8-42, SPRY PF00622 355-462, AAA_33 PF13671 499-643 Hnrpu 1858195 Q8VEK3 HNRPU_MOUSE HNRNP Heterogeneous nuclear ribonucleoproteins RNA modification Alternative splicing 22325991 # RNA mRNA # 22325991 Regulates SMN2 alternative splicing New
HNRPL
(details)
5045 Heterogeneous nuclear ribonucleoprotein L (hnRNP L) 3191 P14866 HNRPL_HUMAN RRM_1 PF00076 106-155, RRM_8 PF11835 191-269, RRM_5 PF13893 361-480, domain PF22976 492-587 Hnrpl 104816 Q8R081 HNRPL_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 25623890 # RNA mRNA # 25623890 Regulates exon inclusion of CD44 New
HNRPM
(details)
5046 Heterogeneous nuclear ribonucleoprotein M (hnRNP M) 4670 P52272 HNRPM_HUMAN HnRNP_M_NLS PF11532 41-70, RRM_1 PF00076 74-143 206-274 655-722 Hnrpm 1926465 Q9D0E1 HNRPM_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 19874820 # RNA mRNA # 19874820 Regulates alternative splicing FGFR2. New
HP1BP3
(details)
24973 heterochromatin protein 1, binding protein 3 50809 Q5SSJ5 HP1B3_HUMAN Linker_histone PF00538 159-229 262-328 342-411 Hp1bp3 109369 Q3TEA8 HP1B3_MOUSE # # Chromatin remodeling # 25100860 # chromatin # # # Chromatin organizer protein HP1BP3 is mediating chromatin condensation during hypoxia. #
HR
(details)
5172 hair growth associated 55806 O43593 HAIR_HUMAN JmjC PF02373 1051-1139 Hr 96223 Q61645 HAIR_MOUSE # # Histone modification erase Histone methylation 24334705 # histone H3K9me1, H3K9me2 H3K9 24334705 HR can demethylate monomethylated or dimethylated histone H3 lysine 9 (H3K9me1 or me2). #
HSFX3
(details)
52395 heat shock transcription factor family, X-linked member 3 101928917 A0A1B0GWH4 HSFX3_HUMAN HSF_DNA-bind PF00447 83-181 # # # # # # # # # # # # # # # New
HSPA1A
(details)
5232 heat shock 70kDa protein 1A 3303 P08107 HSP71_HUMAN Hspa1a 96244 Q61696 HS71A_MOUSE HSP70 Heat shock proteins / HSP70 Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 22123078 CHD8, MLL2/3, MLL4/WBP7 histone # # 22123078 # #
HSPA1A
(details)
5232 heat shock protein family A (Hsp70) member 1B 3303 P0DMV8 HS71A_HUMAN HSP70 PF00012 6-611 Hspa1a 96244 Q61696 HS71A_MOUSE HSPA Heat shock 70kDa proteins Histone modification write cofactor Histone acetylation, Histone methylation, Histone ubiquitination 16809764, 2123078 # Protein HDAC # 16809764, 2123078, 24613385 Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling. New
HSPA1B
(details)
5233 heat shock 70kDa protein 1B 3304 P08107 HSP71_HUMAN Hspa1a 96244 Q61696 HS71A_MOUSE HSP70 Heat shock proteins / HSP70 Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 22123078 CHD8, MLL2/3, MLL4/WBP7 histone # # 22123078 # #
HSPA1B
(details)
5233 heat shock protein family A (Hsp70) member 1B 3304 P0DMV9 HS71B_HUMAN HSP70 PF00012 6-611 Hspa1b 99517 P17879 HS71B_MOUSE HSPA Heat shock 70kDa proteins Histone modification write cofactor Histone acetylation, Histone methylation, Histone ubiquitination 16809764, 2123078 # Protein HDAC # 16809764, 2123078, 24613385 Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling. New
HUWE1
(details)
30892 HECT, UBA and WWE domain containing 1, E3 ubiquitin protein ligase 10075 Q7Z6Z7 HUWE1_HUMAN DUF908 PF06012 25-338, DUF913 PF06025 404-820, domain PF22562 1317-1355, WWE PF02825 1617-1679, UBM PF14377 2962-2994 3055-3081, HECT PF00632 4067-4373 Huwe1 1926884 Q7TMY8 HUWE1_MOUSE # # Histone modification write Histone ubiquitination 15767685 # histone H3K9 # 15767685 A HECT=HUWE1 domain-containing E3 that ubiquitinates histones. #
IKBKAP
(details)
5959 inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein 8518 O95163 ELP1_HUMAN IKI3 PF04762 2-955 Ikbkap 1914544 Q7TT37 ELP1_MOUSE ELP Elongator acetyltransferase complex subunits Scaffold protein # 11818576, 11714725 Pol2 elongator # RNA # 11818576, 11714725 The human Elongator facilitates transcription by RNA polymerase II in a chromatin- and acetyl-CoA-dependent manner. Several human homologues of the yeast Elongator subunits have been identified as subunits of the human Elongator complex, including StIP1 (STAT-interacting protein 1) and IKAP (IKK complex-associated protein) =IKBKAP. #
IKZF1
(details)
13176 IKAROS family zinc finger 1 (Ikaros) 10320 Q13422 IKZF1_HUMAN zf-C2H2 PF00096 145-167 173-195 201-224 Ikzf1 1342540 Q03267 IKZF1_MOUSE ZNF, IKZF Zinc fingers, C2H2-type, IKAROS zinc fingers Chromatin remodeling, TF # 19141594 # DNA DNA motif # 19141594 Ikaros=IKZF1 forms dimers and multimers efficiently, and it has been proposed that Ikaros induces heterochromatization or chromatin remodeling of mouse DNA, resulting in repression or activation of target genes. The results provide insight into possible structural and functional roles of pericentromeric regions in mouse and human chromosomes. #
IKZF3
(details)
13178 IKAROS family zinc finger 3 (Aiolos) 22806 Q9UKT9 IKZF3_HUMAN zf-C2H2 PF00096 146-168 202-222 Ikzf3 1342542 O08900 IKZF3_MOUSE ZNF, IKZF Zinc fingers, C2H2-type, "IKAROS zinc fingers" TF # # # DNA DNA motif # # Associates with histone deacetylase complexes containing HDAC1, MTA2 and SIN3A. (UniProt) #
ING1
(details)
6062 inhibitor of growth family, member 1 3621 Q9UK53 ING1_HUMAN ING PF12998 186-254 Ing1 1349481 Q9QXV3 ING1_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 18533182 # histone H3K4me3 # 18533182 Both DNA repair and apoptotic activities of ING1 require the interaction of the C-terminal plant homeodomain (PHD) finger with histone H3 trimethylated at Lys4 (H3K4me3). The ING1 PHD finger recognizes methylated H3K4 but not other histone modifications as revealed by peptide microarrays. #
ING2
(details)
6063 inhibitor of growth family, member 2 3622 Q9H160 ING2_HUMAN ING PF12998 27-122 Ing2 1916510 Q9ESK4 ING2_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 16728974 mSin3A-like complex histone H3K4me3 # 16728974 ING2, a native subunit of a repressive mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a-HDAC1 complex at the promoters of proliferation genes. #
ING3
(details)
14587 inhibitor of growth family, member 3 54556 Q9NXR8 ING3_HUMAN ING PF12998 3-104 Ing3 1919027 Q8VEK6 ING3_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling, Histone modification write cofactor Histone acetylation 12545155 SWR, NuA4, Piccolo_NuA4 histone H2A, H4 # 12545155 p47ING3 has a PHD-finger motif at its C-terminal region similar to p33ING1 and p33ING2. Although the precise function of the PHD-finger motif is not fully clarified, it is found in proteins involved in chromatin remodeling. #
ING4
(details)
19423 inhibitor of growth family, member 4 51147 Q9UNL4 ING4_HUMAN ING PF12998 6-107 Ing4 107307 Q8C0D7 ING4_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 18381289 HBO1 histone H3K4me3 # 18381289 Crystal structure of ING4-PHD bound to H3K4me3. #
ING5
(details)
19421 inhibitor of growth family, member 5 84289 Q8WYH8 ING5_HUMAN ING PF12998 6-107 Ing5 1922816 Q9D8Y8 ING5_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 18623064 HBO1, MOZ/MORF histone H3K4me3, H3K4me2 # 18623064 Crystal structure of the ING5 PHD finger in complex with its histone target (H3K4me3). Binding affinities for unmodified, mono-, di-, and tri-methylated histone peptides showed that both full-length ING5 and methylated H3K4 are essential for the acetyltransferase activity of the MOZ/MORF and HBO1 complexes. #
INO80
(details)
26956 INO80 complex subunit 54617 Q9ULG1 INO80_HUMAN DBINO PF13892 277-405, SNF2-rel_dom PF00176 521-821, Helicase_C PF00271 1102-1214 Ino80 1915392 Q6ZPV2 INO80_MOUSE INO80 INO80 complex subunits Chromatin remodeling # 16298340 Ino80 DNA # # 16298340 The proteins belonging to SWI2/SNF2 family of DNA dependent ATPases are important members of the chromatin remodeling complexes that are implicated in epigenetic control of gene expression. Functional activity of the domains from hINO80 gene both in terms of the DNA dependent ATPase as well as DNA binding activity. #
INO80B
(details)
13324 INO80 complex subunit B 83444 Q9C086 IN80B_HUMAN PAPA-1 PF04795 187-284, zf-HIT PF04438 308-336 Ino80b 1917270 Q99PT3 IN80B_MOUSE ZNHIT, INO80 Zinc fingers, HIT-type, INO80 complex subunits Chromatin remodeling cofactor # 21303910 Ino80 chromatin # # 21303910 Composed of the hIno80 Snf2 ATPase domain, the Ies2=INO80B and Ies6 proteins, the AAA+ ATPases Tip49a and Tip49b, and the actin-related protein Arp5. #
INO80C
(details)
26994 INO80 complex subunit C 125476 Q6PI98 IN80C_HUMAN YL1_C PF08265 142-170 Ino80c 2443014 Q8BHA0 IN80C_MOUSE INO80 INO80 complex subunits Chromatin remodeling cofactor # 16230350 Ino80, CHD8, MLL2/3, MLL4/WBP7 chromatin # # 16230350 FLAG-tagged PAPA-1, C18orf37, Amida, FLJ20309, and FLJ90652 each copurified with the hINO80 helicase and the Tip49a, Tip49b, PAPA-1, C18orf37, Arp4, Arp5, Arp8, Amida, NFRKB, MCRS1, FLJ90652, and FLJ20309 proteins, which argues that they are all components of a multiprotein hINO80-containing complex. #
INO80D
(details)
25997 INO80 complex subunit D 54891 Q53TQ3 IN80D_HUMAN zf-C3Hc3H PF13891 18-79 453-511 Ino80d 3027003 Q66JY2 IN80D_MOUSE INO80 INO80 complex subunits Chromatin remodeling cofactor # 21303910 Ino80 chromatin # # 21303910 Component of the chromatin remodeling INO80 complex. #
INO80E
(details)
26905 INO80 complex subunit E 283899 Q8NBZ0 IN80E_HUMAN Ino80e 2141881 # # INO80 INO80 complex subunits Chromatin remodeling cofactor # 21303910 # chromatin # # 21303910 Component of the chromatin remodeling INO80 complex. #
JADE1
(details)
30027 jade family PHD finger 1 79960 Q6IE81 JADE1_HUMAN EPL1 PF10513 17-181, PHD_2 PF13831 218-251, zf-HC5HC2H_2 PF13832 256-369 Jade1 1925835 Q6ZPI0 JADE1_MOUSE PHF Zinc fingers, PHD-type Histone modification write Histone acetylation 16387653 HBO1 histone H3, H4 H3ac, H4ac 16387653 HBO1-JADE(1,2,3=PHF15,PHF16,PHF17)-ING-hEAF6 tetramer complexes are likely responsible for the majority of histone H4 acetylation higher eukaryotes. #
JADE2
(details)
22984 jade family PHD finger 2 23338 Q9NQC1 JADE2_HUMAN EPL1 PF10513 16-177, PHD_2 PF13831 214-247, zf-HC5HC2H_2 PF13832 253-364 Jade2 1924151 Q6ZQF7 JADE2_MOUSE PHF Zinc fingers, PHD-type Histone modification write Histone acetylation 16387653 HBO1 histone H3, H4 H3ac, H4ac 16387653 HBO1-JADE(1,2,3=PHF15,PHF16,PHF17)-ING-hEAF6 tetramer complexes are likely responsible for the majority of histone H4 acetylation higher eukaryotes. #
JADE3
(details)
22982 jade family PHD finger 3 9767 Q92613 JADE3_HUMAN EPL1 PF10513 47-177, PHD_2 PF13831 215-248, zf-HC5HC2H_2 PF13832 254-366 Jade3 2148019 Q6IE82 JADE3_MOUSE PHF Zinc fingers, PHD-type Histone modification write Histone acetylation 14612400 HBO1 histone H3, H4 H3ac, H4ac 14612400 Function in the activation and/or repression of Hox complex genes via modulation of chromatin structure. #
JAK2
(details)
6192 Janus kinase 2 3717 O60674 JAK2_HUMAN FERM_F1 PF18379 39-133, FERM_F2 PF18377 144-261, Jak1_Phl PF17887 306-381, domain PF21990 398-502, PK_Tyr_Ser-Thr PF07714 545-805 849-1122 Jak2 96629 Q62120 JAK2_MOUSE SH2D SH2 domain containing Histone modification write Histone phosphorylation 19783980 # histone H3T41 H3T41ph 19783980 Human JAK2 is present in the nucleus of haematopoietic cells and directly phosphorylates Tyr 41 (Y41) on histone H3. #
JARID2
(details)
6196 jumonji, AT rich interactive domain 2 3720 Q92833 JARD2_HUMAN JmjN PF02375 558-591, ARID PF01388 624-709, JmjC PF02373 916-1031, zf-C5HC2 PF02928 1139-1191 Jarid2 104813 Q62315 JARD2_MOUSE # # Histone modification write cofactor Histone methylation 20075857 PRC2 histone H3K27, H3K9 # 20075857 JARID2 is sufficient to recruit PcG proteins to a heterologous promoter, and inhibition of JARID2 expression leads to a major loss of PcG binding and to a reduction of H3K27me3 levels on target genes. #
JDP2
(details)
17546 Jun dimerization protein 2 122953 Q8WYK2 JDP2_HUMAN bZIP_1 PF00170 70-128 Jdp2 1932093 P97875 JDP2_MOUSE bZIP basic leucine zipper proteins Chromatin remodeling, Histone modification erase cofactor Histone acetylation 16518400 # DNA # # 16518400 JDP2 has histone-chaperone activity in vitro. The sequence-specific DNA-binding protein JDP2 may control transcription via direct regulation of the modification of histones and the assembly of chromatin. #
JMJD1C
(details)
12313 jumonji domain containing 1C 221037 Q15652 JHD2C_HUMAN domain PF22989 11-86, domain PF22988 108-181, domain PF22987 179-254, JmjC PF02373 2379-2481 Jmjd1c 1918614 Q69ZK6 JHD2C_MOUSE # # Histone modification erase Histone methylation 17549425 # histone H3K9me H3K9 17549425 JMJD1A (TSGA), JMJD1B (5qNCA) and JMJD1C with the common domain architecture are histone H3K9 demethylases implicated in the nuclear hormone receptor-based transcriptional regulation. #
JMJD6
(details)
19355 jumonji domain containing 6 23210 Q6NYC1 JMJD6_HUMAN JmjC PF02373 174-288 Jmjd6 1858910 Q9ERI5 JMJD6_MOUSE # # Histone modification erase Histone methylation 17947579 # histone H3R2me, H4R3me H3R2, H4R3 17947579 The Jumonji domain-containing 6 protein (JMJD6) is a JmjC-containing iron- and 2-oxoglutarate-dependent dioxygenase that demethylates histone H3 at arginine 2 (H3R2) and histone H4 at arginine 3 (H4R3) in both biochemical and cell-based assays. #
KANSL1
(details)
24565 KAT8 regulatory NSL complex subunit 1 284058 Q7Z3B3 KANL1_HUMAN PEHE PF15275 887-1020 Kansl1 1923969 Q80TG1 KANL1_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 20018852 NSL, CHD8, MLL2/3, MLL4/WBP7 histone H4 H4ac 20018852 As part of the NSL complex it is involved in acetylation of nucleosomal histone H4 on several lysine residues and therefore may be involved in the regulation of transcription. #
KANSL2
(details)
26024 KAT8 regulatory NSL complex subunit 2 54934 Q9H9L4 KANL2_HUMAN zf-C3Hc3H PF13891 28-92 308-365 Kansl2 1916862 Q8BQR4 KANL2_MOUSE # # Histone modification write cofactor Histone acetylation 20018852 NSL histone H5 H4ac 20018852 As part of the NSL complex it is involved in acetylation of nucleosomal histone H4 on several lysine residues and therefore may be involved in the regulation of transcription. #
KANSL3
(details)
25473 KAT8 regulatory NSL complex subunit 3 55683 Q9P2N6 KANL3_HUMAN Abhydrolase_11 PF20408 329-449 Kansl3 1918055 A2RSY1 KANL3_MOUSE # # Histone modification write cofactor Histone acetylation 20018852 NSL histone H6 H4ac 20018852 As part of the NSL complex it is involved in acetylation of nucleosomal histone H4 on several lysine residues and therefore may be involved in the regulation of transcription. #
KAT2A
(details)
4201 K(lysine) acetyltransferase 2A 2648 Q92830 KAT2A_HUMAN PCAF_N PF06466 92-335, Acetyltransf_1 PF00583 536-627, Bromodomain PF00439 738-819 Kat2a 1343101 Q9JHD2 KAT2A_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 10611234 TFTC-HAT, SAGA, ATAC, STAGA histone # # 10611234 Current models of HAT protein activity suggest that one hypothesis for the role of hGCN5=KAT2A in c-Myc's activities might be due to the relaxing of chromatin packaging at target genes following histone acetylation by hGCN5. #
KAT2B
(details)
8638 K(lysine) acetyltransferase 2B 8850 Q92831 KAT2B_HUMAN PCAF_N PF06466 77-323, Acetyltransf_1 PF00583 531-622, Bromodomain PF00439 733-814 Kat2b 1343094 Q9JHD1 KAT2B_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 8945521 # histone # # 8945521 The cellular p300/CBP associated factor (PCAF=KAT2B) possesses intrinsic histone acetyltransferase activity. #
KAT5
(details)
5275 K(lysine) acetyltransferase 5 10524 Q92993 KAT5_HUMAN Tudor-knot PF11717 7-65, zf-MYST PF17772 229-283, MOZ_SAS PF01853 288-470 Kat5 1932051 Q8CHK4 KAT5_MOUSE KAT, ZC2HC Chromatin-modifying enzymes / K-acetyltransferases, Zinc fingers, C2HC-type containing Histone modification write Histone acetylation 10096020 SWR, NuA4, Piccolo_NuA4 histone H2AK5, H3K14, H4K5,H4K8, H4K12, H4K16 H2AK5ac, H3K14ac, H4K5ac, H4K8ac, H4K12ac, H4K16ac 10096020 Tip60=KAT5 significantly acetylates amino-terminal tail peptides of histones H2A, H3 and H4, but not H2B, consistent with substrate preference on intact histones. Preferred acetylation sites for Tip60 are the Lys-5 of histone H2A, the Lys-14 of histone H3, and the Lys-5, -8, -12, -16 of histone H4. #
KAT6A
(details)
13013 K(lysine) acetyltransferase 6A 7994 Q92794 KAT6A_HUMAN SAMD1_WH PF21524 10-73, PHD PF00628 208-263 264-310, zf-MYST PF17772 507-560, MOZ_SAS PF01853 564-741 Kat6a 2442415 Q8BZ21 KAT6A_MOUSE KAT, ZC2HC, PHF Chromatin-modifying enzymes / K-acetyltransferases, Zinc fingers, C2HC-type containing, Zinc fingers, PHD-type Histone modification write Histone acetylation 11313971 MOZ/MORF histone H3, H4 H3ac, H4ac 11313971 The monocytic leukemia zinc finger protein MOZ=KAT6A is a histone acetyltransferase. #
KAT6B
(details)
17582 K(lysine) acetyltransferase 6B 23522 Q8WYB5 KAT6B_HUMAN SAMD1_WH PF21524 9-73, PHD PF00628 271-317, zf-MYST PF17772 718-771, MOZ_SAS PF01853 776-979 Kat6b 1858746 Q8BRB7 KAT6B_MOUSE KAT, ZC2HC, PHF Chromatin-modifying enzymes / K-acetyltransferases, Zinc fingers, C2HC-type containing, Zinc fingers, PHD-type Histone modification write Histone acetylation 10497217 MOZ/MORF histone H3 H3ac 10497217 A novel human histone acetyltransferase, termed MORF=KAT6B (monocytic leukemia zinc finger protein-related factor). #
KAT7
(details)
17016 K(lysine) acetyltransferase 7 11143 O95251 KAT7_HUMAN zf-C2HC PF01530 184-212, zf-MYST PF17772 337-388, MOZ_SAS PF01853 393-570 Kat7 2182799 Q5SVQ0 KAT7_MOUSE KAT, ZC2HC Chromatin-modifying enzymes / K-acetyltransferases, Zinc fingers, C2HC-type containing Histone modification write Histone acetylation 10438470 HBO1 histone H4 H4ac 10438470 A novel protein, HBO1=KAT7 (histone acetyltransferase binding to ORC), that interacts with human ORC1 protein. #
KAT8
(details)
17933 K(lysine) acetyltransferase 8 84148 Q9H7Z6 KAT8_HUMAN Tudor-knot PF11717 54-110, zf-MYST PF17772 176-230, MOZ_SAS PF01853 235-412 Kat8 1915023 Q9D1P2 KAT8_MOUSE KAT, ZC2HC Chromatin-modifying enzymes / K-acetyltransferases, Zinc fingers, C2HC-type containing Histone modification write Histone acetylation 10786633 NSL, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7 histone H2A, H3, H4 H2Aac, H3ac, H4ac 10786633 A recombinant C-terminal portion of hMOF=KAT8 has histone acetyltransferase activity directed toward histones H3, H2A and H4, a specificity characteristic of other MYST family histone acetyltransferases. #
KDM1A
(details)
29079 lysine (K)-specific demethylase 1A 23028 O60341 KDM1A_HUMAN SWIRM PF04433 183-264, Amino_oxidase PF01593 288-826 Kdm1a 1196256 Q6ZQ88 KDM1A_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 16223729 NuRD, BHC, SCL histone H3K4me1, H3K4me2, H3K9me H3K4, H3K9 16223729 Human histone demethylase LSD1=KDM1A is a flavin-dependent amine oxidase that catalyzes the specific removal of methyl groups from mono- and dimethylated Lys4 of histone H3. #
KDM1B
(details)
21577 lysine (K)-specific demethylase 1B 221656 Q8NB78 KDM1B_HUMAN zf-CW PF07496 137-189, SWIRM PF04433 292-364, Amino_oxidase PF01593 392-819 Kdm1b 2145261 Q8CIG3 KDM1B_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 19727073 # histone H3K4me1, H3K4me2 H3K4 19727073 KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. #
KDM2A
(details)
13606 lysine (K)-specific demethylase 2A 22992 Q9Y2K7 KDM2A_HUMAN JHD PF17811 304-343, zf-CXXC PF02008 565-609, PHD_4 PF16866 615-676, F-box-like PF12937 896-935 Kdm2a 1354736 P59997 KDM2A_MOUSE FBXL, KDM F-boxes / Leucine-rich repeats, Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 20417597 # histone H3K36me2 H3K36 20417597 CpG islands directly recruit the H3K36-specific lysine demethylase enzyme KDM2A. Nucleation of KDM2A at these elements results in removal of H3K36 methylation, creating CpG island chromatin that is uniquely depleted of this modification. #
KDM2B
(details)
13610 lysine (K)-specific demethylase 2B 84678 Q8NHM5 KDM2B_HUMAN Cupin_8 PF13621 150-331, JHD PF17811 334-375, zf-CXXC PF02008 607-651, PHD_4 PF16866 657-723, F-box-like PF12937 1068-1107 Kdm2b 1354737 Q6P1G2 KDM2B_MOUSE FBXL, KDM F-boxes / Leucine-rich repeats, Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 17994099 BCOR histone H3K4me3, H3K36me2 H3K4, H3K36 17994099 JHDM1B =KDM2B is a histone demethylase that catalyses the demethylation of H3K4me3. #
KDM3A
(details)
20815 lysine (K)-specific demethylase 3A 55818 Q9Y4C1 KDM3A_HUMAN domain PF22989 8-82, domain PF22988 92-182, domain PF22987 184-249, JmjC PF02373 1158-1264 Kdm3a 98847 Q6PCM1 KDM3A_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 16603237 # histone H3K9me1, H3K9me2 H3K9 16603237 JHDM2A =KDM3A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. #
KDM3B
(details)
1337 lysine (K)-specific demethylase 3B 51780 Q7LBC6 KDM3B_HUMAN domain PF22989 10-83, domain PF22988 91-188, domain PF22987 189-254, JmjC PF02373 1599-1704 Kdm3b 1923356 Q6ZPY7 KDM3B_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 16603237 # histone H3K9me1, H3K9me2 H3K9 16603237 A JmjC domain-containing protein (KDM3B=JmjC domain-containing histone demethylation protein 2B), JHDM2A, which specifically demethylates mono- and dimethyl-H3K9. #
KDM4A
(details)
22978 lysine (K)-specific demethylase 4A 9682 O75164 KDM4A_HUMAN JmjN PF02375 14-49, JmjC PF02373 175-291, PHD_2 PF13831 732-767, zf-HC5HC2H_2 PF13832 774-884, Tudor_2 PF18104 902-936 959-994 Kdm4a 2446210 Q8BW72 KDM4A_MOUSE KDM, TDRD Chromatin-modifying enzymes / K-demethylases, Tudor domain containing Histone modification erase Histone methylation 16603238 # histone H3K4me3, H3K36me3 H3K4me2, H3K36me2 16603238 The JmjC domain-containing protein JMJD2A =KDM4A reverses trimethylated H3-K9/K36 to di- but not mono- or unmethylated products. Overexpression of JMJD2A (but not a catalytically inactive mutant) reduces H3-K9/K36 trimethylation levels in cultured cells. #
KDM4B
(details)
29136 lysine (K)-specific demethylase 4B 23030 O94953 KDM4B_HUMAN JmjN PF02375 16-50, JmjC PF02373 176-292, PHD_2 PF13831 754-789, zf-HC5HC2H_2 PF13832 796-907, Tudor_2 PF18104 922-956 978-1014 Kdm4b 2442355 Q91VY5 KDM4B_MOUSE KDM, TDRD Chromatin-modifying enzymes / K-demethylases, Tudor domain containing Histone modification erase Histone methylation 16603238 # histone H3K9me3 H3K9me1, H3K9me2 16603238 Human JMJD2(B, C, D) =KDM4(B, C, D) subfamily members function as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. #
KDM4C
(details)
17071 lysine (K)-specific demethylase 4C 23081 Q9H3R0 KDM4C_HUMAN JmjN PF02375 17-51, JmjC PF02373 177-293, PHD_2 PF13831 712-747, zf-HC5HC2H_2 PF13832 754-864, Tudor_2 PF18104 881-916 939-974 Kdm4c 1924054 Q8VCD7 KDM4C_MOUSE KDM, TDRD Chromatin-modifying enzymes / K-demethylases, Tudor domain containing Histone modification erase Histone methylation 16603238 # histone H3K9me3, H3K36me3 H3K9me1, H3K9me2 16603238 Human JMJD2(B, C, D) =KDM4(B, C, D) subfamily members function as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. #
KDM4D
(details)
25498 lysine (K)-specific demethylase 4D 55693 Q6B0I6 KDM4D_HUMAN JmjN PF02375 19-53, JmjC PF02373 179-295 Kdm4d 3606484 Q3U2K5 KDM4D_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 16603238 # histone H3K9me3 H3K9me1, H3K9me2 16603238 Human JMJD2(B, C, D) =KDM4(B, C, D) subfamily members function as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. #
KDM4E
(details)
37098 lysine (K)-specific demethylase 4E 390245 B2RXH2 KDM4E_HUMAN JmjN PF02375 16-50, JmjC PF02373 176-292 # # # # KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 21914792 # histone H3K9me2, H3K9me3 H3K9 21914792 KDM4D and KDM4E (which is catalytically active) catalyze demethylation of H3K9me3/me2. #
KDM5A
(details)
9886 lysine (K)-specific demethylase 5A 5927 P29375 KDM5A_HUMAN JmjN PF02375 20-53, ARID PF01388 86-170, PHD PF00628 296-340 1164-1215, JmjC PF02373 470-586, KDM5_C-hel PF21323 590-644, zf-C5HC2 PF02928 676-728, PLU-1 PF08429 741-1070 Kdm5a 2136980 Q3UXZ9 KDM5A_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 17320163 # histone H3K4me3 H3K4 17320163 The retinoblastoma binding protein RBP2 =KDM5A is an H3K4 demethylase. #
KDM5B
(details)
18039 lysine (K)-specific demethylase 5B 10765 Q9UGL1 KDM5B_HUMAN JmjN PF02375 33-66, ARID PF01388 99-183, PHD PF00628 312-356 1178-1221 1487-1535, JmjC PF02373 486-602, KDM5_C-hel PF21323 606-660, zf-C5HC2 PF02928 692-744, PLU-1 PF08429 758-1088 Kdm5b 1922855 Q80Y84 KDM5B_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 17363312 # histone H3K4me3 H3K4 17363312 PLU-1 =KDM5B, a transcriptional repressor implicated in breast cancer, is a histone demethylase enzyme that has the ability to reverse the trimethyl H3K4 modification state. #
KDM5C
(details)
11114 lysine (K)-specific demethylase 5C 8242 P41229 KDM5C_HUMAN JmjN PF02375 15-48, ARID PF01388 80-165, PHD PF00628 327-371, JmjC PF02373 501-617, KDM5_C-hel PF21323 621-675, zf-C5HC2 PF02928 707-759, PLU-1 PF08429 771-1098 Kdm5c 99781 P41230 KDM5C_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 17320160 # histone H3K4me3 H3K4me2, H3K4me1 17320160 The X-linked mental retardation (XLMR) gene SMCX (JARID1C)=KDM5C, which encodes a JmjC-domain protein, reverses H3K4me3 to di- and mono- but not unmethylated products. #
KDM5D
(details)
11115 lysine (K)-specific demethylase 5D 8284 Q9BY66 KDM5D_HUMAN JmjN PF02375 15-48, ARID PF01388 81-165, PHD PF00628 317-361, JmjC PF02373 491-607, KDM5_C-hel PF21323 611-665, zf-C5HC2 PF02928 697-749, PLU-1 PF08429 763-1085 Kdm5d 99780 Q62240 KDM5D_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 17320160 # histone H3K4me3, H3K4me2 H3K4 17320160 SMCX family members, including SMCY=KDM5D, RBP2, and PLU-1, demethylate H3K4me3. #
KDM6A
(details)
12637 lysine (K)-specific demethylase 6A 7403 O15550 KDM6A_HUMAN TPR_8 PF13181 205-237, JmjC PF02373 1133-1241, KDM6_C-hel PF21322 1248-1303, KDM6_GATAL PF21326 1320-1380 Kdm6a 1095419 O70546 KDM6A_MOUSE KDM, TTC Chromatin-modifying enzymes / K-demethylases, Tetratricopeptide (TTC) repeat domain containing Histone modification erase Histone methylation 17851529 CHD8, MLL2/3, MLL4/WBP7, COMPASS-like MLL3,4 histone H3K27me2. H3K27me3 H3K27 17851529 The JmjC-domain-containing proteins UTX=KDM6A and JMJD3 catalyse demethylation of H3K27me3/2. #
KDM6B
(details)
29012 lysine (K)-specific demethylase 6B 23135 O15054 KDM6B_HUMAN JmjC PF02373 1377-1485, KDM6_C-hel PF21322 1492-1547, KDM6_GATAL PF21326 1560-1623 Kdm6b 2448492 Q5NCY0 KDM6B_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 17851529 # histone H3K27me2. H3K27me4 H3K28 17851529 The JmjC-domain-containing proteins UTX=KDM6A and JMJD3=KDM6B catalyse demethylation of H3K27me3/2. #
KDM7A
(details)
22224 lysine (K)-specific demethylase 7A 80853 Q6ZMT4 KDM7A_HUMAN PHD PF00628 40-85, JmjC PF02373 269-369, JHD PF17811 373-480 Kdm7a 2443388 Q3UWM4 KDM7A_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 20194436 # histone H3K9me2, H3K27me2, H4K20me1 H3K9, H3K27, H4K20 20194436 KDM7 (also known as JHDM1D) is a dual demethylase for H3K9 and H3K27 that functions as an eraser of silencing marks on chromatin during brain development. Specifically binds trimethylated 'Lys-4' of histone H3 (H3K4me3), affecting histone demethylase specificity: in presence of H3K4me3, it has no demethylase activity toward H3K9me2, while it has high activity toward H3K27me2. Demethylates H3K9me2 in absence of H3K4me3. Has activity toward H4K20Me1 only when nucleosome is used as a substrate and when not histone octamer is used as substrate. #
KDM8
(details)
25840 lysine (K)-specific demethylase 8 79831 Q8N371 KDM8_HUMAN Cupin_8 PF13621 194-416 Kdm8 1924285 Q9CXT6 KDM8_MOUSE KDM Chromatin-modifying enzymes / K-demethylases Histone modification erase Histone methylation 20457893 # histone H3K36me2 H3K36 20457893 JMJD5 (now renamed KDM8), a JmjC family member, demethylates H3K36me2 and is required for cell cycle progression. #
KEAP1
(details)
23177 kelch-like ECH-associated protein 1 9817 Q14145 KEAP1_HUMAN BTB PF00651 67-178, BACK PF07707 184-285, Kelch_1 PF01344 327-359 361-410 412-457 459-504 507-551 553-598 Keap1 1858732 Q9Z2X8 KEAP1_MOUSE KLHL, BTBD Kelch-like, "BTB/POZ domain containing" Chromatin remodeling # 21920360 # chromatin # # # Interacts with the NURF Nucleosome Remodeling Factor complex. #
KHDRBS1
(details)
18116 KH domain-containing, RNA-binding, signal transduction-associated protein 1 (GAP-associated tyrosine phosphoprotein p62) (Src-associated in mitosis 68 kDa protein) (Sam68) (p21 Ras GTPase-activating protein-associated p62) (p68) 10657 Q07666 KHDR1_HUMAN Qua1 PF16274 102-153, KH_1 PF00013 159-209, Sam68-YY PF16568 368-420 Khdrbs1 893579 Q60749 KHDR1_MOUSE KHDRBS Signal transduction and activation of RNA metabolism family RNA modification Alternative splicing 24514149 # RNA mRNA # 24514149 Regulates BCL-X and VEGF alternative splicing New
KLF18
(details)
51793 Kruppel like factor 18 105378952 A0A0U1RQI7 KLF18_HUMAN zf-C2H2 PF00096 994-1018 1024-1046 Zfp352 2387418 A2AML7 A2AML7_MOUSE KLF Kruppel like factors TF # 24244731 # DNA DNA # 24244731 # New
KMT2A
(details)
7132 lysine (K)-specific methyltransferase 2A 4297 Q03164 KMT2A_HUMAN zf-CXXC PF02008 1149-1194, PHD PF00628 1481-1530 1569-1624, zf-HC5HC2H PF13771 1897-1978, FYRN PF05964 2016-2077, FYRC PF05965 3666-3747, SET PF00856 3840-3945 Kmt2a 96995 P55200 KMT2A_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 19187761 MLL-HCF, CHD8, COMPASS-like MLL1,2 histone H3K4 H3K4me 19187761 MLL1 SET domain can incorporate methyl groups into unmodified or H3K4me1 substrates, signifying both mono- and dimethylation activity. #
KMT2B
(details)
15840 lysine (K)-specific methyltransferase 2B 9757 Q9UMN6 KMT2B_HUMAN zf-CXXC PF02008 959-1005, PHD PF00628 1203-1250 1251-1300 1337-1393, zf-HC5HC2H PF13771 1605-1685, FYRN PF05964 1731-1784, FYRC PF05965 2415-2494, SET PF00856 2580-2691 Kmt2b 109565 O08550 KMT2B_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 17707229 Menin-associated_HMT, MLL2/3, COMPASS-like MLL3,4 histone H3K4 H3K4me3 17707229 MLL (=KMT2B)-containing complexes methylate histone H3 at lysine 4 (H3K4) and have been implicated in the regulation of transcription. #
KMT2C
(details)
13726 lysine (K)-specific methyltransferase 2C 58508 Q8NEZ4 KMT2C_HUMAN zf-HC5HC2H PF13771 248-331, PHD PF00628 343-389 390-436 466-519 958-1008, zf-HC5HC2H_2 PF13832 4401-4506, FYRN PF05964 4546-4604, FYRC PF05965 4608-4692, SET PF00856 4781-4887 Kmt2c 2444959 Q8BRH4 KMT2C_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 20937768 MLL2/3, COMPASS-like MLL3,4 histone H3K4 H3K4me 20937768 In humans, multiple Set1-like HMT complexes with H3K4 HMT activities have been identified. Each of these complexes contains the SET domain-containing homologs of yeast Set1, including human Set1 (hSet1), MLL1 (mixed lineage leukemia 1, also known as MLL, HRX, ALL1, or KMT2A), MLL2 (mixed-lineage leukemia 2, also known as HRX2 or KMT2B), MLL3 (mixed-lineage leukemia 3, also known as HALR or KMT2C), and MLL4 (mixed-lineage leukemia 4, also known as ALR or KMT2D), which carry the enzymatic activity for the associated complexes. #
KMT2D
(details)
7133 lysine (K)-specific methyltransferase 2D 8085 O14686 KMT2D_HUMAN zf-HC5HC2H PF13771 139-218, PHD PF00628 228-274 276-321 1379-1428 1429-1474, zf-HC5HC2H_2 PF13832 5031-5136, FYRN PF05964 5176-5233, FYRC PF05965 5236-5322, SET PF00856 5408-5513 Kmt2d 2682319 Q6PDK2 KMT2D_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 20937768 COMPASS-like MLL1,2, MLL4/WBP7, COMPASS-like MLL3,4 histone H3K4 H3K4me 20937768 In humans, multiple Set1-like HMT complexes with H3K4 HMT activities have been identified. Each of these complexes contains the SET domain-containing homologs of yeast Set1, including human Set1 (hSet1), MLL1 (mixed lineage leukemia 1, also known as MLL, HRX, ALL1, or KMT2A), MLL2 (mixed-lineage leukemia 2, also known as HRX2 or KMT2B), MLL3 (mixed-lineage leukemia 3, also known as HALR or KMT2C), and MLL4 (mixed-lineage leukemia 4, also known as ALR or KMT2D), which carry the enzymatic activity for the associated complexes. #
KMT2E
(details)
18541 lysine (K)-specific methyltransferase 2E 55904 Q8IZD2 KMT2E_HUMAN PHD_5 PF20826 118-164, SET PF00856 343-447 Kmt2e 1924825 Q3UG20 KMT2E_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 19377461 # histone H3K4 H3K4me1, H3K4me2 19377461 Nuclear GlcNAcylation of the histone lysine methyltransferase (HKMT), MLL5, by O-GlcNAc transferase facilitates retinoic-acid-induced granulopoiesis in human HL60 promyelocytes through methylation of H3K4. #
L3MBTL1
(details)
15905 l(3)mbt-like 1 (Drosophila) 26013 Q9Y468 LMBL1_HUMAN MBT PF02820 310-377 417-484 521-586, zf-C2HC PF01530 622-650 L3mbtl1 2676663 A2A5N8 LMBL1_MOUSE ZC2HC, SAMD Zinc fingers, C2HC-type containing, Sterile alpha motif (SAM) domain containing Histone modification read # 18026117 L3MBTL1 histone H1BK26, H4K20 # 18026117 Crystal structures of the L3MBTL1 MBT repeats in complex with histone H4 peptides dimethylated on Lys20 (H4K20me2). Only the second of the three MBT repeats can bind mono- and dimethylated histone peptides. Its binding pocket has similarities to that of 53BP1 and is able to recognize the degree of histone lysine methylation. #
L3MBTL2
(details)
18594 l(3)mbt-like 2 (Drosophila) 83746 Q969R5 LMBL2_HUMAN zf-FCS_1 PF21319 87-118, MBT PF02820 214-286 327-390 432-503 540-604 L3mbtl2 2443584 P59178 LMBL2_MOUSE # # Histone modification read # 19233876 RING2-L3MBTL2 histone H3K4, H3K9, H3K27, H4K20 # 19233876 Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. #
L3MBTL3
(details)
23035 l(3)mbt-like 3 (Drosophila) 84456 Q96JM7 LMBL3_HUMAN MBT PF02820 268-335 375-441 479-544, SAM_1 PF00536 707-770 L3mbtl3 2143628 Q8BLB7 LMBL3_MOUSE SAMD Sterile alpha motif (SAM) domain containing Histone modification read # 23292653 # histone H4K20me # 23292653 Binds L3MBTL3 with a similar affinity to H4K20me histone #
L3MBTL4
(details)
26677 l(3)mbt-like 4 (Drosophila) 91133 Q8NA19 LMBL4_HUMAN MBT PF02820 88-155 196-263 300-366, zf-C2HC PF01530 379-407, SAM_1 PF00536 543-605 L3mbtl4 2444889 B1B1A0 LMBL4_MOUSE SAMD Sterile alpha motif (SAM) domain containing Histone modification read # 20698951 # histone HKme # 20698951 The L3MBTL4 protein contains three "malignant brain tumor" (MBT) domains. The MBT domain binds methylated histone residues. #
LAS1L
(details)
25726 LAS1-like (S. cerevisiae) 81887 Q9Y4W2 LAS1L_HUMAN Las1 PF04031 43-187 Las1l 1923380 A2BE28 LAS1L_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 20442285 CHD8, MLL2/3, MLL4/WBP7 histone H3K4, H3,H4,H2A H3K4me, H3K4me2, H3Ac, H4Ac, H2AAc 15960975 Facultative member of the MLL1/MLL complex. #
LBR
(details)
6518 lamin B receptor 3930 Q14739 LBR_HUMAN LBR_tudor PF09465 2-56, ERG4_ERG24 PF01222 199-615 Lbr 2138281 Q3U9G9 LBR_MOUSE TDRD Tudor domain containing # # 22498752 # chromatin # # # Anchors the lamina and the heterochromatin to the inner nuclear membrane. #
LEO1
(details)
30401 Leo1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) 123169 Q8WVC0 LEO1_HUMAN Leo1 PF04004 374-538 Leo1 2685031 Q5XJE5 LEO1_MOUSE # # Histone modification write cofactor Histone ubiquitination 24038468 # histone # # # Part of the PAF1 complex, which may be involved in recruitment of ubiquitination complexes. Important for PAF1 binding to H3. #
LRWD1
(details)
21769 leucine-rich repeats and WD repeat domain containing 1 222229 Q9UFC0 LRWD1_HUMAN domain PF12799 48-104, WD40 PF00400 384-421 Lrwd1 1918985 Q8BUI3 LRWD1_MOUSE WDR WD repeat domain containing Chromatin remodeling # 20932478 # histone, DNA H3K9me3, H3K27me3 # 20932478 A highly conserved, leucine-rich repeats and WD40 repeat domain-containing protein 1 (LRWD1) or ORC-associated (ORCA) in human cells that interacts with ORC and modulates chromatin association of ORC. ORCA colocalizes with ORC and shows similar cell-cycle dynamics. ORCA efficiently recruits ORC to chromatin. #
MAGOH
(details)
6815 Protein mago nashi homolog 4116 P61326 MGN_HUMAN Mago_nashi PF02792 5-146 Magoh 1330312 P61327 MGN_MOUSE # # RNA modification Alternative splicing 22203037 # RNA mRNA # 22203037 Regulates alternative splicing of apoptotic regulators New
MAP3K7
(details)
6859 mitogen-activated protein kinase kinase kinase 7 6885 O43318 M3K7_HUMAN PK_Tyr_Ser-Thr PF07714 36-284 Map3k7 1346877 Q62073 M3K7_MOUSE MAP3K Mitogen-activated protein kinase cascade / Kinase kinase kinases Histone modification write # 18838386 # histone # # # A member of the ATAC complex. #
MAPKAPK3
(details)
6888 mitogen-activated protein kinase-activated protein kinase 3 7867 Q16644 MAPK3_HUMAN Pkinase PF00069 47-304 Mapkapk3 2143163 Q3UMW7 MAPK3_MOUSE # # Chromatin remodeling # 15563468 # chromatin # # 15563468 MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. #
MASTL
(details)
19042 microtubule associated serine/threonine kinase-like 84930 Q96GX5 GWL_HUMAN Pkinase PF00069 36-188 736-835 Mastl 1914371 Q8C0P0 GWL_MOUSE # # Histone modification write Histone phosphorylation 20818157 # histone H1, H3 H1p, H3p 20818157 Phosphorylates histone protein in vitro; however such activity is unsure in vivo (UniProt). #
MAX
(details)
6913 MYC associated factor X 4149 P61244 MAX_HUMAN HLH PF00010 24-74 Max 96921 P28574 MAX_MOUSE bHLH Basic helix-loop-helix proteins Histone modification write cofactor, TF Histone methylation, Histone acetylation, TF activator, TF repressor 18271930, 12004135 CHD8, MLL2/3, MLL4/WBP7 DNA DNA motif # 18271930, 12004135 Part of a multimeric protein complex that contains E2F6, Mga and Max. The complex contains chromatin modifiers such as a novel histone methyltransferase that modifies lysine 9 of histone H3, HP1gamma, and Polycomb group (PcG) proteins. #
MAZ
(details)
6914 MYC-associated zinc finger protein (purine-binding transcription factor) 4150 P56270 MAZ_HUMAN zf-C2H2 PF00096 279-301 337-360 366-388, zf-C2H2_4 PF13894 307-329 Maz 1338823 P56671 MAZ_MOUSE ZNF Zinc fingers, C2H2-type Chromatin remodeling # 21920360 # chromatin # # # Interacts with the NURF Nucleosome Remodeling Factor complex. #
MBD1
(details)
6916 methyl-CpG binding domain protein 1 4152 Q9UIS9 MBD1_HUMAN MBD PF01429 2-70, zf-CXXC PF02008 169-215 219-262 331-377 Mbd1 1333811 Q9Z2E2 MBD1_MOUSE # # Histone modification write cofactor, TF Histone methylation, TF repressor 15327775 # DNA mCG, DNA motif # 15327775 MBD1 recruits SETDB1 to the large subunit of chromatin assembly factor CAF-1 to form an S phase-specific CAF-1/MBD1/SETDB1 complex that facilitates methylation of H3-K9 during replication-coupled chromatin assembly. In the absence of MBD1, H3-K9 methylation is lost at multiple genomic loci and results in activation of p53BP2 gene, normally repressed by MBD1 in HeLa cells. Data suggest a model in which H3-K9 methylation by SETDB1 is dependent on MBD1 and is heritably maintained through DNA replication to support the formation of stable heterochromatin at methylated DNA. #
MBD2
(details)
6917 methyl-CpG binding domain protein 2 8932 Q9UBB5 MBD2_HUMAN MBD PF01429 150-213, MBDa PF16564 221-294, MBD_C PF14048 296-385 Mbd2 1333813 Q9Z2E1 MBD2_MOUSE # # Histone modification write cofactor, Histone modification erase cofactor, TF Histone methylation, Histone acetylation, TF repressor 16415179 NuRD, MeCP1 DNA mCG, DNA motif # 16415179 Wild-type subnuclear distribution of p66alpha and p66beta depends on the presence of MBD2. Both proteins interact with the tails of all octamer histones in vitro, and acetylation of histone tails interferes with p66 binding. #
MBD3
(details)
6918 methyl-CpG binding domain protein 3 53615 O95983 MBD3_HUMAN MBD PF01429 2-69, MBDa PF16564 79-149, MBD_C PF14048 152-241 Mbd3 1333812 Q9Z2D8 MBD3_MOUSE # # Histone modification erase cofactor Histone acetylation 12124384 NuRD histone # # 12124384 MBD3 has been identified as a component of the NuRD/Mi2 complex that shows chromatin remodeling and histone deacetylase activities. MBD3 MBD is necessary and sufficient for binding to HDAC1 and MTA2, two components of the NuRD/Mi2 complex. It has been suggested that mCpG-binding-defective MBD3 has evolutionarily conserved its MBD because of the secondary role played by the MBD in protein-protein interactions. #
MBD4
(details)
6919 methyl-CpG binding domain protein 4 8930 O95243 MBD4_HUMAN MBD PF01429 81-149, domain PF00730 463-560 Mbd4 1333850 Q9Z2D7 MBD4_MOUSE # # DNA modification # 10930409 # DNA G:T, G:U # 10930409 MED1 functions as a mismatch-specific DNA repair enzyme. MED1 lacks uracil glycosylase activity on single-strand DNA and abasic site lyase activity. The glycosylase activity of MED1 prefers substrates containing a G:T mismatch within methylated or unmethylated CpG sites; since G:T mismatches can originate via deamination of 5-methylcytosine to thymine, MED1 may act as a caretaker of genomic fidelity at CpG sites. #
MBD5
(details)
20444 methyl-CpG binding domain protein 5 55777 Q9P267 MBD5_HUMAN Mbd5 2138934 B1AYB6 MBD5_MOUSE # # Chromatin remodeling # 20700456 # chromatin # # 20700456 MBD5 and MBD6 may contribute to the unique epigenetic machinery of neurons or to the global reorganization of chromatin during spermatogenesis. #
MBD6
(details)
20445 methyl-CpG binding domain protein 6 114785 Q96DN6 MBD6_HUMAN Mbd6 106378 Q3TY92 MBD6_MOUSE # # Chromatin remodeling # 20700456 # chromatin # # 20700456 MBD5 and MBD6 may contribute to the unique epigenetic machinery of neurons or to the global reorganization of chromatin during spermatogenesis. #
MBIP
(details)
20427 MAP3K12 binding inhibitory protein 1 51562 Q9NS73 MBIP1_HUMAN Mbip 1918320 Q99LQ1 MBIP1_MOUSE # # Histone modification write cofactor Histone acetylation 19103755 ATAC histone # # 19103755 Novel proteins identified as STAGA/ TFTC subunits, such as ATAC2, DR1, MBIP, WDR5, YEATS2, and ZZZ3/ATAC1. #
MBNL1
(details)
6923 Muscleblind-like protein 1 (Triplet-expansion RNA-binding protein) 4154 Q9NR56 MBNL1_HUMAN zf-CCCH_2 PF14608 19-39, domain PF22628 48-86 216-253, zf-CCCH PF00642 183-205 Mbnl1 1928482 Q9JKP5 MBNL1_MOUSE ZC3H Zinc fingers CCCH-type RNA modification Alternative splicing 16946708, 19470458, 15257297 # RNA mRNA # 16946708, 19470458, 15257297 Regulates the TNNT2 exon 5 skipping through competition with U2AF2. Inhibits cardiac troponin-T (TNNT2) pre-mRNA exon inclusion but induces insulin receptor (IR) pre-mRNA exon inclusion but induces insulin receptor (IR) pre-mRNA exon inclusion in muscle. Antagonistic regulator with CELF proteins. New
MBNL3
(details)
20564 Muscleblind-like protein 3 (Cys3His CCG1-required protein) (Muscleblind-like X-linked protein) (Protein HCHCR) 55796 Q9NUK0 MBNL3_HUMAN zf-CCCH_2 PF14608 20-40, domain PF22628 49-87 211-248, zf-CCCH_4 PF18044 179-200 Mbnl3 2444912 Q8R003 MBNL3_MOUSE ZC3H Zinc fingers CCCH-type RNA modification Alternative splicing 15257297 # RNA mRNA # 15257297 Inhibits cardiac troponin-T (TNNT2) pre-mRNA exon inclusion but induces insulin receptor (IR) pre-mRNA exon inclusion in muscle. Antagonistic regulator with CELF proteins. New
MBTD1
(details)
19866 mbt domain containing 1 54799 Q05BQ5 MBTD1_HUMAN zf-FCS_1 PF21319 52-82, MBT PF02820 189-248 289-352 388-459 496-560 Mbtd1 2143977 Q6P5G3 MBTD1_MOUSE # # Polycomb group (PcG) protein # 19841675 # histone H4K20me1, H4K20me2 # 19841675 MBTD1, Malignant Brain Tumor domain-containing protein 1, is a PcG protein. #
MCRS1
(details)
6960 microspherule protein 1 10445 Q96EZ8 MCRS1_HUMAN MCRS_N PF13325 134-331, FHA PF00498 363-435 Mcrs1 1858420 Q99L90 MCRS1_MOUSE INO80 INO80 complex subunits Histone modification write Histone acetylation 20018852 Ino80, NSL, CHD8, MLL2/3, MLL4/WBP7 histone H4K5, H4K8, H4K16 H4K5ac, H4K8ac, H4K16ac 20018852 Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. #
MDC1
(details)
21163 mediator of DNA-damage checkpoint 1 9656 Q14676 MDC1_HUMAN FHA PF00498 54-122, RTT107_BRCT_5 PF16770 1888-1970, BRCT_2 PF16589 1994-2074 Mdc1 3525201 Q5PSV9 MDC1_MOUSE # # Histone modification read # 16377563 # histone H2AX # 16377563 Mammalian MDC1/NFBD1 directly binds to phospho-H2AX (gammaH2AX) by specifically interacting with the phosphoepitope at the gammaH2AX carboxyl terminus. #
MEAF6
(details)
25674 MYST/Esa1-associated factor 6 64769 Q9HAF1 EAF6_HUMAN NuA4 PF09340 18-95 Meaf6 1917338 Q2VPQ9 EAF6_MOUSE # # Histone modification write cofactor Histone acetylation 18794358 HBO1, NuA4, MOZ/MORF histone H2A, H3K14, H4K5, H4K8, H4K12 H2Aac, H3K14ac, H4K5ac, H4K8ac, H4K12ac 18794358 BRPF proteins bridge the association of MOZ and MORF with ING5 and EAF6=MEAF6. An N-terminal region of BRPF1 interacts with the acetyltransferases; the enhancer of polycomb (EPc) homology domain in the middle part binds to ING5 and EAF6. The association of BRPF1 with EAF6 is weak, but ING5 increases the affinity. These three proteins form a trimeric core that is conserved from Drosophila melanogaster to humans, although authentic orthologs of MOZ and MORF are absent in invertebrates. Deletion mapping studies revealed that the acetyltransferase domain of MOZ/MORF is sufficient for BRPF1 interaction. At the functional level, complex formation with BRPF1 and ING5 drastically stimulates the activity of the acetyltransferase domain in acetylation of nucleosomal histone H3 and free histones H3 and H4. #
MECP2
(details)
6990 methyl CpG binding protein 2 4204 P51608 MECP2_HUMAN MBD PF01429 97-159 Mecp2 99918 Q9Z2D6 MECP2_MOUSE # # Histone modification write cofactor, Histone modification write cofactor, TF Histone methylation, Histone acetylation, TF repressor 10773092 # DNA mCG, DNA motif # 10773092 Methyl-CpG-binding protein 2 (MeCP2) contains a transcriptional repression domain (TRD), which can act by recruitment of a large transcriptional co-repressor complex containing histone deacetylases HDAC1 and 2. #
MEN1
(details)
7010 multiple endocrine neoplasia I # O00255 MEN1_HUMAN Menin PF05053 4-499 550-610 Men1 1316736 O88559 MEN1_MOUSE # # Histone modification write cofactor Histone methylation 14992727 Menin-associated_HMT, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7 histone H3K4 H3K4me 14992727, 15199122 Essential component of a MLL/SET1 histone methyltransferase (HMT) complex, a complex that specifically methylates 'Lys-4' of histone H3 (H3K4) (UniProt). #
METTL11B
(details)
31932 methyltransferase like 11B 149281 Q5VVY1 NTM1B_HUMAN Methyltransf_PK PF05891 65-278 Mettl11b 2685053 B2RXM4 NTM1B_MOUSE METTL Methyltransferase like Histone modification writer Histone methylation 26543159 # protein CENP-A K55m 26543159 Regulates centromere function and mitosis New
METTL14
(details)
29330 methyltransferase like 14 57721 Q9HCE5 MET14_HUMAN MT-A70 PF05063 186-363 Mettl14 2442926 Q3UIK4 MET14_MOUSE METTL Methyltransferase like RNA modification RNA methylation 24316715 WMM RNA A of mRNA m(6)A 24316715 Regulates mRNA stability, processing miRNA, DNA-reparation New
METTL16
(details)
28484 methyltransferase like 16 79066 Q86W50 MET16_HUMAN Methyltransf_10 PF05971 1-291 Mettl16 1914743 Q9CQG2 MET16_MOUSE METTL Methyltransferase like RNA modification RNA methylation 29051200 # RNA U6 snRNA (A43) m6A43 32266935 Tunes snRNA–pre‐mRNA interactions, controls alternative splicing New
METTL21A
(details)
30476 methyltransferase like 21A 151194 Q8WXB1 MT21A_HUMAN Methyltransf_16 PF10294 26-189 Mettl21a 1914349 Q9CQL0 MT21A_MOUSE METTL Methyltransferase like Protein modification Protein methylation # # protein Hsp70 Km3 23921388 Modulates the affinity of Hsp70 for targets New
METTL3
(details)
17563 methyltransferase like 3 56339 Q86U44 MTA70_HUMAN MT-A70 PF05063 389-550 Mettl3 1927165 Q8C3P7 MTA70_MOUSE METTL Methyltransferase like RNA modification RNA methylation 24316715 WMM RNA A of mRNA m(6)A 24316715 Regulates mRNA stability, processing miRNA, DNA-reparation New
METTL4
(details)
24726 methyltransferase like 4 64863 Q8N3J2 METL4_HUMAN MT-A70 PF05063 281-454 Mettl4 1924031 Q3U034 METL4_MOUSE METTL Methyltransferase like RNA modification, DNA modification RNA methylation, DNA methylation 30982744 # DNA, RNA A of DNA, U2 snRNA m(6)A 31913360 Regulates transcriptional silencing, Polycomb silencing, splicing regulation New
MGA
(details)
14010 MGA, MAX dimerization protein 23269 Q8IWI9 MGAP_HUMAN T-box PF00907 77-259, MGA_dom PF16059 1043-1085, HLH PF00010 2425-2474 Mga 1352483 A2AWL7 MGAP_MOUSE # # Histone modification write cofactor, TF Histone methylation, Histone acetylation, TF activator, TF repressor # RING2-L3MBTL2, CHD8, MLL2/3, MLL4/WBP7 DNA DNA motif # # Added because it is a complex partner #
MGEA5
(details)
7056 meningioma expressed antigen 5 (hyaluronidase) 10724 O60502 NCOAT_HUMAN NAGidase PF07555 61-341 Mgea5 1932139 Q9EQQ9 NCOAT_MOUSE # # Histone modification write Histone acetylation 15485860 # histone H3K14, H4K8 H3K14ac, H4K8ac 15485860 The HAT domain of NCOAT=MGEA5 has the ability to acetylate all four core histones when either free or bound by DNA in the context of oligonucleosome arrays. #
MINA
(details)
19441 MYC induced nuclear antigen 84864 Q8IUF8 MINA_HUMAN JmjC_2 PF08007 137-261, ROXA-like_wH PF20514 331-431 Mina 1914264 Q8CD15 MINA_MOUSE # # Histone modification erase Histone methylation 19502796 # histone H3K9me3 H3K9 19502796 mdig=MINA is involved in demethylation of tri-methyl lysine 9 on histone H3. #
MIS18A
(details)
1286 MIS18 kinetochore protein A 54069 Q9NYP9 MS18A_HUMAN Yippee-Mis18 PF03226 81-186 Mis18a 1913828 Q9CZJ6 MIS18A_MOUSE # # Chromatin remodeling # 17199038 Mis18 histone CENPA # 17199038 Recruits CENPA to centromeres. Regulates normal chromosome segregation during mitosis. New
MIS18BP1
(details)
20190 MIS18 binding protein 1 55320 Q6P0N0 M18BP_HUMAN SANTA PF09133 376-470 Mis18bp1 2145099 Q80WQ8 M18BP_MOUSE Myb/SANT domain containing Myb/SANT domain containing Chromatin remodeling # 17199038 Mis18 histone CENPA # 17199038 Recruits CENPA to centromeres. Regulates normal chromosome segregation during mitosis. New
MLLT1
(details)
7134 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 1 4298 Q03111 ENL_HUMAN YEATS PF03366 27-107, AHD PF17793 496-555 Mllt1 1927238 # # # # Chromatin remodeling cofactor # 23623499 SWI/SNF-like_EPAFa, SWI/SNF-like EPAFB chromatin # # 23623499 MLL-ENL (=MLLT1) inhibits polycomb repressive complex 1. #
MLLT10
(details)
16063 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 10 8028 P55197 AF10_HUMAN PHD_2 PF13831 37-72, zf-HC5HC2H_2 PF13832 80-197 Mllt10 1329038 O54826 AF10_MOUSE PHF Zinc fingers, PHD-type Histone modification write cofactor Histone methylation 20203130 # histone H3K79 H3K79me3 20203130 MLLT10 =AF10 plays an important role in Dot1’s HMTase activity through either DotCom stability, catalytic activity, or the recruitment of the complex to chromatin. #
MLLT6
(details)
7138 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translocated to, 6 4302 P55198 AF17_HUMAN PHD_2 PF13831 20-55, zf-HC5HC2H_2 PF13832 63-180 Mllt6 1935145 # # PHF Zinc fingers, PHD-type Histone modification write cofactor Histone methylation 20203130 # histone H3K79 H3K79me3 20203130 MLLT6 =AF17, nucleosomes containing monoubiquitinated H2B are a better substrate for DotCom in the generation of trimethylated H3K79. DotCom requires monoubiquitination of H2B for H3K79 trimethylation. #
MORF4L1
(details)
16989 mortality factor 4 like 1 10933 Q9UBU8 MO4L1_HUMAN Tudor-knot PF11717 11-52, MRG PF05712 175-351 Morf4l1 1096551 P60762 MO4L1_MOUSE # # Histone modification read # 21423274 NuA4 histone H4 # 21423274 Table 1 in reference (MRG15 =MORF4L1). #
MORF4L2
(details)
16849 mortality factor 4 like 2 9643 Q15014 MO4L2_HUMAN MRG PF05712 101-280 Morf4l2 1927167 Q9R0Q4 MO4L2_MOUSE # # Histone modification erase cofactor Histone acetylation 12963728 NuA4 histone # # 12963728 The FLJ10914 protein is associated with components of the TRRAP/TIP60 histone acetyltransferase complex and binds directly to the MORF4-related MRG15 and MRGX proteins. #
MOV10
(details)
7200 Mov10 RISC complex RNA helicase 4343 Q9HCE1 MOV10_HUMAN MOV-10_N PF21632 15-85, MOV-10_Ig-like PF21633 119-240, Mov-10_helical PF21635 291-358, MOV-10_beta-barrel PF21634 358-448, AAA_11 PF13086 499-572 610-690, AAA_12 PF13087 699-921 Mov10 97054 P23249 MOV10_MOUSE # # # # 20543829 # histone # # # MOV10 may be directly involved in transcriptional silencing by PcG complexes. #
MPHOSPH8
(details)
29810 M-phase phosphoprotein 8 54737 Q99549 MPP8_HUMAN Chromo PF00385 59-108, Ank_2 PF12796 571-665, Ank PF00023 666-695 Mphosph8 1922589 Q3TYA6 MPP8_MOUSE ANKRD Ankyrin repeat domain containing Histone modification read # 21419134 # histone H3K9me3, H3K9me2 # 21419134 M-phase phosphoprotein 8 (MPP8=MPHOSPH8) harbors an N-terminal chromodomain and a C-terminal ankyrin repeat domain. MPP8, via its chromodomain, binds histone H3 peptide tri- or di-methylated at lysine 9 (H3K9me3/H3K9me2) in submicromolar affinity. #
MPND
(details)
25934 MPN domain-containing 84954 Q8N594 MPND_HUMAN RAMA PF18755 66-169, JAB PF01398 271-369 Mpnd 1915297 Q3TV65 MPND_MOUSE # # Histone modification erase Histone ubiquitination 30982744 # histone H2A-Ub (K119) H2A 30982744 Polycomb repressing deubiquitinase New
MRGBP
(details)
15866 MRG/MORF4L binding protein 55257 Q9NV56 MRGBP_HUMAN Eaf7 PF07904 36-96 Mrgbp 1920497 Q9DAT2 MRGBP_MOUSE # # Histone modification write cofactor Histone acetylation 12963728 NuA4 histone # # 12963728 TRCp120, DMAP1, and MRGBP are components of the mammalian TRRAP/TIP60 histone acetyltransferase complex. #
MSH6
(details)
7329 mutS homolog 6 2956 P52701 MSH6_HUMAN PWWP PF00855 92-182, MutS_I PF01624 408-524, MutS_II PF05188 538-693, MutS_III PF05192 738-1064, MutS_IV PF05190 932-1024, MutS_V PF00488 1130-1324 Msh6 1343961 P54276 MSH6_MOUSE # # Histone modification read # 21423274 # histone H3K36me3 # 21423274, 23622243 Table 1 in the reference. Via its PWWP domain it specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair reaction. #
MSL1
(details)
27905 male-specific lethal 1 homolog (Drosophila) 339287 Q68DK7 MSL1_HUMAN MSL1_dimer PF16801 216-250, PEHE PF15275 478-591 Msl1 1921276 Q6PDM1 MSL1_MOUSE # # Histone modification write Histone ubiquitination 21726816 # histone H2BK34 H2BK34ub 21726816 MSL1/2 ubiquitylates nucleosomal H2B on K34 in vitro. #
MSL2
(details)
25544 male-specific lethal 2 homolog (Drosophila) 55167 Q9HCI7 MSL2_HUMAN zf-RING_10 PF16685 39-110, MSL2-CXC PF16682 455-506 Msl2 1925103 Q69ZF8 MSL2_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 21726816 # histone H2BK34 H2BK34ub 21726816 RING finger protein MSL2 in the MOF-MSL complex is a histone ubiquitin E3 ligase. MSL2, together with MSL1, has robust histone ubiquitylation activity that mainly targets nucleosomal H2B on lysine 34 (H2B K34ub), a site within a conserved basic patch on H2B tail. #
MSL3
(details)
7370 male-specific lethal 3 homolog (Drosophila) 10943 Q8N5Y2 MS3L1_HUMAN domain PF22732 11-87, MRG PF05712 161-505 Msl3 1341851 Q9WVG9 MS3L1_MOUSE # # Histone modification read # 20943666 # histone H4K20me1 # 20943666 MSL3 plays an important role in targeting the male specific lethal complex to chromatin in both humans and flies by binding to H4K20Me. #
MST1
(details)
7380 macrophage stimulating 1 (hepatocyte growth factor-like) 4485 P26927 HGFL_HUMAN PAN_1 PF00024 26-104, Kringle PF00051 109-186 190-268 283-361 370-448, Trypsin PF00089 485-704 Mst1 96080 P26928 HGFL_MOUSE # # Histone modification # 17320507 # histone # # # Classified as histone-modifying enzymes in paper. #
MTA1
(details)
7410 metastasis associated 1 9112 Q13330 MTA1_HUMAN BAH PF01426 5-162, ELM2 PF01448 167-219, Myb_DNA-binding PF00249 287-331, GATA PF00320 393-429, MTA_R1 PF17226 464-543 Mta1 2150037 Q8K4B0 MTA1_MOUSE GATAD GATA zinc finger domain containing Chromatin remodeling cofactor # 9885572 NuRD chromatin # # 9885572 One subunit of NURD was identified as MTA1, a metastasis-associated protein with a region similar to the nuclear receptor corepressor, N-CoR; and antibodies against NURD partially relieve transcriptional repression by thyroid hormone receptor. These results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin. #
MTA2
(details)
7411 metastasis associated 1 family, member 2 9219 O94776 MTA2_HUMAN BAH PF01426 4-142, ELM2 PF01448 147-199, Myb_DNA-binding PF00249 266-311, GATA PF00320 367-403, MTA_R1 PF17226 450-525 Mta2 1346340 Q9R190 MTA2_MOUSE GATAD GATA zinc finger domain containing Histone modification erase cofactor Histone acetylation 10444591 NuRD histone # # 10444591 MTA2 directs the assembly of an active histone deacetylase complex, and the association of MTA2 with the core HDAC/RbAp complex requires MBD3. #
MTA3
(details)
23784 metastasis associated 1 family, member 3 57504 Q9BTC8 MTA3_HUMAN BAH PF01426 4-145, ELM2 PF01448 150-202, Myb_DNA-binding PF00249 269-314, GATA PF00320 379-415, MTA_R1 PF17226 462-537 Mta3 2151172 Q924K8 MTA3_MOUSE GATAD GATA zinc finger domain containing Chromatin remodeling cofactor # 12705869 NuRD chromatin # # 12705869 The product of human MTA3 is an estrogen-dependent component of the Mi-2/NuRD transcriptional corepressor in breast epithelial cells. MTA3 constitutes a key component of an estrogen-dependent pathway regulating growth and differentiation. #
MTF2
(details)
29535 metal response element binding transcription factor 2 22823 Q9Y483 MTF2_HUMAN Tudor_2 PF18104 49-84, PHD PF00628 105-154, Mtf2_C PF14061 544-590 Mtf2 105050 Q02395 MTF2_MOUSE TDRD, PHF Tudor domain containing, "Zinc fingers, PHD-type" Polycomb group (PcG) protein # 21881606 PRC2 histone H3K36me3 # 21881606 Polycomb group (PcG) that binds histone H3 trimethylated at Lys-36. #
MUM1
(details)
29641 melanoma associated antigen (mutated) 1 84939 Q2TAK8 MUM1_HUMAN PWP3A-B_N PF20887 1-105, MUM1-like_PWWP PF20884 411-484, PWP3A-B_C PF20886 561-707 Mum1 1915364 Q6DID5 MUM1_MOUSE # # Histone modification read # 217205545 # histone H3K36me, K3K79me, H4K20me # 217205545 The PWWP domains in BRPF1, BRPF2, HDGF2, MUM1 and the N-terminal PWWP domains of WHSC1 and WHSC1L1 show weak binding affinity to histones with H3K36, K3K79 or H4K20 #
MYBBP1A
(details)
7546 MYB binding protein (P160) 1a 10514 Q9BQG0 MBB1A_HUMAN DNA_pol_phi PF04931 38-834 Mybbp1a 106181 Q7TPV4 MBB1A_MOUSE # # Chromatin remodeling cofactor # 16603771 B-WICH chromatin # # 16603771 The WSTF (Williams syndrome transcription factor) protein is involved in vitamin D-mediated transcription and replication as a component of two distinct ATP-dependent chromatin remodeling complexes, WINAC and WICH, respectively. The WICH complex (WSTF-SNF2h) interacts with several nuclear proteins as follows: Sf3b155/SAP155, RNA helicase II/Guα, Myb-binding protein 1a, CSB. #
MYO1C
(details)
7597 myosin IC 4641 O00159 MYO1C_HUMAN Myosin_head PF00063 49-718, IQ PF00612 737-755 758-778, Myosin_TH1 PF06017 887-1058 Myo1c 106612 Q9WTI7 MYO1C_MOUSE MYOI Myosins / Myosin superfamily : Class I Chromatin remodeling cofactor # 16603771 B-WICH chromatin # # 16603771 The WSTF (Williams syndrome transcription factor) protein is involved in vitamin D-mediated transcription and replication as a component of two distinct ATP-dependent chromatin remodeling complexes, WINAC and WICH, respectively. The WICH complex (WSTF-SNF2h) interacts with several nuclear proteins as follows: Sf3b155/SAP155, RNA helicase II/Gualpha, Myb-binding protein 1a, CSB, the proto-oncogene Dek, and nuclear myosin 1 in a large 3-MDa assembly, B-WICH, during active transcription. #
MYSM1
(details)
29401 Myb-like, SWIRM and MPN domains 1 114803 Q5VVJ2 MYSM1_HUMAN Myb_DNA-binding PF00249 120-163, SWIRM PF04433 382-461, JAB PF01398 576-679 Mysm1 2444584 Q69Z66 MYSM1_MOUSE # # Histone modification erase Histone ubiquitination 17707232 # histone H2Aub H2A 17707232 JAMM/MPN(+) domain-containing histone H2A deubiquitinase (2A-DUB, or KIAA1915/MYSM1) is specific for monoubiquitinated H2A (uH2A) that has permitted delineation of a strategy for specific regulatory pathways of gene activation. #
NAA60
(details)
25875 N(alpha)-acetyltransferase 60, NatF catalytic subunit 79903 Q9H7X0 NAA60_HUMAN Acetyltransf_1 PF00583 27-155 Naa60 1922013 Q9DBU2 NAA60_MOUSE NAA N(alpha)-acetyltransferase subunits Histone modification write Histone acetylation 21981917 # histone H4K20, H4K79, H4K91 H4K20ac, H4K79ac, H4K91ac 21981917 HAT4 =NAA60 is localized in the Golgi apparatus and displays a substrate preference for lysine residues of free histone H4, including H4K79 and H4K91, that reside in the globular domain of H4. #
NAP1L1
(details)
7637 nucleosome assembly protein 1-like 1 4673 P55209 NP1L1_HUMAN NAP PF00956 77-344 Nap1l1 1855693 P28656 NP1L1_MOUSE # # Histone chaperone # 18226242 # histone # # 18226242 Human Nucleosome Assembly Protein-1 (hNAP-1) =NAP1L1 is known to act as a histone chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes chromatin fluidity, thereby affecting transcription of several cellular genes. #
NAP1L2
(details)
7638 nucleosome assembly protein 1-like 2 4674 Q9ULW6 NP1L2_HUMAN NAP PF00956 111-408 Nap1l2 106654 P51860 NP1L2_MOUSE # # Histone modification cofactor # 21333655, 17591696 # histone H3, H4 # # Interacts with H3 and H4 and may be involved in regulation of acetylation. #
NAP1L4
(details)
7640 nucleosome assembly protein 1-like 4 4676 Q99733 NP1L4_HUMAN NAP PF00956 65-338 Nap1l4 1316687 Q78ZA7 NP1L4_MOUSE # # Histone modification cofactor # 21333655 # histone H3, H4 # # Interacts with H3 and H4 and may be involved in regulation of acetylation. #
NASP
(details)
7644 nuclear autoantigenic sperm protein (histone-binding) 4678 P49321 NASP_HUMAN SHNi-TPR PF10516 542-575, TPR_8 PF13181 584-615 Nasp 1355328 Q99MD9 NASP_MOUSE TTC Tetratricopeptide (TTC) repeat domain containing Chromatin remodeling # 8724350 # histone H1 # 8724350 Binds to linker H1 histones, but not to core histones. #
NAT10
(details)
29830 N-acetyltransferase 10 (GCN5-related) 55226 Q9H0A0 NAT10_HUMAN TmcA_N PF08351 9-201, Helicase_RecD PF05127 282-486, GNAT_acetyltr_2 PF13718 529-753, tRNA_bind_2 PF13725 763-974 Nat10 2138939 Q8K224 NAT10_MOUSE # # Histone modification write Histone acetylation 14592445 # histone # # 14592445 hALP =NAT10 can specifically acetylate free histones in vitro. hALP may influence the activity of histone acetylation and possibly up-regulate telomerase activity through transactivation of hTERT promoter. #
NAT10
(details)
29830 N-acetyltransferase 10 55226 Q9H0A0 NAT10_HUMAN TmcA_N PF08351 9-201, Helicase_RecD PF05127 282-486, GNAT_acetyltr_2 PF13718 529-753, tRNA_bind_2 PF13725 763-974 Nat10 2138939 Q8K224 NAT10_MOUSE GNAT GCN5 related N-acetyltransferase RNA modification RNA acetylation 30449621 # RNA C of mRNA ac4C 30449621 Regulates mRNA stabiility and therefore translation efficiency New
NBN
(details)
7652 nibrin 4683 O60934 NBN_HUMAN FHA PF00498 24-100, BRCT PF00533 114-181, NIBRIN_BRCT_II PF16508 217-323, Nbs1_C PF08599 685-749 Nbn 1351625 Q9R207 NBN_MOUSE # # Chromatin remodeling # 19338747 # histone H2AX # # Interacts with H2AX. UniProt: It can also recruit MRE11 and RAD50 to the proximity of DSBs by an interaction with the histone H2AX. #
NCL
(details)
7667 nucleolin 4691 P19338 NUCL_HUMAN RRM_1 PF00076 309-377 395-459 488-554 574-641 Ncl 97286 P09405 NUCL_MOUSE RBM RNA binding motif (RRM) containing Histone chaperone # 16601700 # histone, DNA, RNA DNA motif, RNA motif # 16601700, 15371412 The nuclear protein nucleolin =NCL possesses a histone chaperone activity and this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. #
NCOA1
(details)
7668 nuclear receptor coactivator 1 8648 Q15788 NCOA1_HUMAN PAS PF00989 116-176, PAS_11 PF14598 259-368, NCOA_u2 PF16665 437-682, SRC-1 PF08832 630-699, Nuc_rec_co-act PF08815 921-974, DUF1518 PF07469 1142-1189 1208-1268 Ncoa1 1276523 P70365 NCOA1_MOUSE KAT, bHLH Chromatin-modifying enzymes / K-acetyltransferases, Basic helix-loop-helix proteins Histone modification write Histone acetylation 9296499 # histone H3, H4 # 9296499 The HAT activity of SRC-1=NCOA1 maps to its carboxy-terminal region and is primarily specific for histones H3 and H4. Acetylation by SRC-1 and PCAF of histones bound at specific promoters may result from ligand binding to steroid receptors and could be a mechanism by which the activation functions of steroid receptors and associated coactivators enhance formation of a stable preinitiation complex, thereby increasing transcription of specific genes from transcriptionally repressed chromatin templates. #
NCOA2
(details)
7669 nuclear receptor coactivator 2 10499 Q15596 NCOA2_HUMAN PAS PF00989 119-182, PAS_11 PF14598 268-375, NCOA_u2 PF16665 463-581, SRC-1 PF08832 635-709, DUF4927 PF16279 730-821, Nuc_rec_co-act PF08815 1072-1115, DUF1518 PF07469 1274-1340 Ncoa2 1276533 Q61026 NCOA2_MOUSE KAT, bHLH Chromatin-modifying enzymes / K-acetyltransferases, Basic helix-loop-helix proteins Chromatin remodeling cofactor # 9590696 # chromatin # # 9590696 GR, SRC-1/NcoA1 and GRIP-1/TIF-2/NcoA2 are known to bind to distinct regions. The chromatin remodeling complexes and coactivators may contribute to the transcriptional activation of organized chromatin templates. #
NCOA3
(details)
7670 nuclear receptor coactivator 3 8202 Q9Y6Q9 NCOA3_HUMAN PAS PF00989 117-179, PAS_11 PF14598 265-372, NCOA_u2 PF16665 490-572, SRC-1 PF08832 588-707, DUF4927 PF16279 722-817, Nuc_rec_co-act PF08815 1045-1092, DUF1518 PF07469 1273-1348 Ncoa3 1276535 O09000 NCOA3_MOUSE KAT, bHLH Chromatin-modifying enzymes / K-acetyltransferases, Basic helix-loop-helix proteins Histone modification write Histone acetylation 9267036 # histone # # 9267036 ACTR =NCOA3 is a potent histone acetyltransferase and appears to define a distinct evolutionary branch. #
NCOA6
(details)
15936 nuclear receptor coactivator 6 23054 Q14686 NCOA6_HUMAN NCOA6_TRADD-N PF13820 47-182 Ncoa6 1929915 Q9JL19 NCOA6_MOUSE # # Histone modification write cofactor Histone methylation 17500065 CHD8, MLL2/3, COMPASS-like MLL3,4 histone # # 17500065 Ectopically expressed PTIP is capable of interacting with DNA damage response proteins including 53BP1, while endogenous PTIP, and a novel protein PA1 are both components of a Set1-like histone methyltransferase (HMT) complex that also contains ASH2L, RBBP5, WDR5, hDPY-30, NCOA6, SET domain-containing HMTs MLL3 and MLL4, and substoichiometric amount of JmjC domain-containing putative histone demethylase UTX. #
NCOR1
(details)
7672 nuclear receptor corepressor 1 9611 O75376 NCOR1_HUMAN GPS2_interact PF15784 151-235, Myb_DNA-binding PF00249 626-670 Ncor1 1349717 Q60974 NCOR1_MOUSE # # Histone modification erase cofactor Histone acetylation 14527417 # histone # # # UniProt: Part of a complex which promotes histone deacetylation and the formation of repressive chromatin structures which may impede the access of basal transcription factors. #
NCOR2
(details)
7673 nuclear receptor corepressor 2 9612 Q9Y618 NCOR2_HUMAN GPS2_interact PF15784 150-228, Myb_DNA-binding PF00249 431-474 613-657 Ncor2 1337080 Q9WU42 NCOR2_MOUSE # # Histone modification erase cofactor Histone acetylation 14527417, 25006126 # # # # # Ncor2 knockdown upregulates fos transcription by modulating the acetylation level in the fos promoter region. #
NEK6
(details)
7749 NIMA-related kinase 6 10783 Q9HC98 NEK6_HUMAN Pkinase PF00069 45-296 Nek6 1891638 Q9ES70 NEK6_MOUSE # # Histone modification write Histone phosphorylation 12054534 # histone H1, H3 H1ph, H3ph 12054534 Recombinant hNek6 protein produced in insect cells effectively phosphorylates histones H1 and H3, but not casein. Thus Nek6 is a mitotic histone kinase which regulates chromatin condensation in mammalian cells. #
NEK9
(details)
18591 NIMA-related kinase 9 91754 Q8TD19 NEK9_HUMAN Pkinase PF00069 54-308, RCC1 PF00415 399-441 445-496 499-547, RCC1_2 PF13540 655-683 Nek9 2387995 Q8K1R7 NEK9_MOUSE # # Histone modification write Histone phosphorylation 14660563 # histone H1 H1ph 14660563 Endogenous, immunoprecipitated Nek9 kinase can become activated (i.e. phosphorylation on histone H1). #
NFRKB
(details)
7802 nuclear factor related to kappaB binding protein 4798 Q6P4R8 NFRKB_HUMAN NFRKB_winged PF14465 375-480 Nfrkb 2442410 Q6PIJ4 NFRKB_MOUSE INO80 INO80 complex subunits Chromatin remodeling cofactor, TF # 16230350 Ino80 DNA DNA motif # 16230350 Five proteins appear to be unique to the human INO80 complex. NFRKB is a large (more than 1300 amino acids) protein. The C-terminal half of NFRKB contains low complexity, mucin-like repeats. #
NFYB
(details)
7805 nuclear transcription factor Y, beta 4801 P25208 NFYB_HUMAN CBFD_NFYB_HMF PF00808 58-122 Nfyb 97317 P63139 NFYB_MOUSE # # Chromatin remodeling, TF TF activator 15243141, 23332751 # DNA DNA motif # 23332751 NF-Y is a sequence-specific transcription factor with nucleosome-like properties of nonspecific DNA binding and helps establish permissive chromatin modifications at CCAAT promoters. #
NFYC
(details)
7806 nuclear transcription factor Y, gamma 4802 Q13952 NFYC_HUMAN Histone PF00125 24-105 Nfyc 107901 P70353 NFYC_MOUSE # # Histone modification # 21445285 # histone # # # NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters #
NIPBL
(details)
28862 Nipped-B homolog (Drosophila) 25836 Q6KC79 NIPBL_HUMAN Cohesin_HEAT PF12765 1794-1835, Nipped-B_C PF12830 2276-2449 Nipbl 1918425 Q6KCD5 NIPBL_MOUSE # # Histone modification erase cofactor Histone acetylation 25255084, 18854353 # # # # # Probably involved in cohesin loading and promoter-enhancer interaction. Attracts histone deacetylases. #
NOC2L
(details)
24517 nucleolar complex associated 2 homolog (S. cerevisiae) 26155 Q9Y3T9 NOC2L_HUMAN Noc2 PF03715 331-624 Noc2l 1931051 Q9WV70 NOC2L_MOUSE # # Chromatin remodeling, TF TF repressor 15100215 # histone H3 # 15100215 INHAT =NOC2L (inhibitor of acetyltransferases) is a specific histone H3 N-terminal tail-binding complex. #
NPAS2
(details)
7895 neuronal PAS domain protein 2 4862 Q99743 NPAS2_HUMAN HLH PF00010 11-58, PAS PF00989 84-151, PAS_11 PF14598 250-353 Npas2 109232 P97460 NPAS2_MOUSE bHLH Basic helix-loop-helix proteins Chromatin remodeling, TF TF activator 14645221, 24196956 # DNA DNA motif # 14645221 There is a time-dependent recruitment of chromatin remodeling machinery by NPAS2 in vivo. #
NPM1
(details)
7910 nucleophosmin (nucleolar phosphoprotein B23, numatrin) 4869 P06748 NPM_HUMAN Nucleoplasmin PF03066 17-117, NPM1-C PF16276 244-293 Npm1 106184 Q61937 NPM_MOUSE # # Histone chaperone # 25349213 # histone H3, H2B, H4 # # Co-immunoprecipitation shows that NPM1 is associated with HP1γ, core and linker histones. Uniprot: Acts as a chaperonin for the core histones H3, H2B and H4. #
NPM2
(details)
7930 nucleophosmin/nucleoplasmin 2 10361 Q86SE8 NPM2_HUMAN Nucleoplasmin PF03066 19-119 Npm2 1890811 Q80W85 NPM2_MOUSE # # Histone chaperone # 21863821 # histone H2A, H2B # # Core histone chaperon. In the absence of histone tetramers, these chaperones bind H2A-H2B dimers. #
NSD1
(details)
14234 nuclear receptor binding SET domain protein 1 64324 Q96L73 NSD1_HUMAN PWWP PF00855 318-408 1756-1846, domain PF23011 1542-1587, domain PF22908 1591-1639, domain PF23004 1640-1692, PHD PF00628 1710-1748, AWS PF17907 1900-1940, SET PF00856 1953-2059, C5HCH PF17982 2162-2210 Nsd1 1276545 O88491 NSD1_MOUSE KMT, PHF Chromatin-modifying enzymes / K-methyltransferases, Zinc fingers, PHD-type Histone modification write Histone methylation 21196496 # histone H3K36, H4K20 H3K36me, H4K20me 21196496 NSD1 is a SET domain histone methyltransferase that primarily dimethylates nucleosomal histone H3 lysine 36 (H3K36). #
NSL1
(details)
24548 NSL1, MIS12 kinetochore complex component 25936 Q96IY1 NSL1_HUMAN Mis14 PF08641 80-190 Nsl1 2685830 Q8K305 NSL1_MOUSE # # Histone modification write cofactor Histone acetylation 20018852 # histone H4K16 H4K16ac 20018852 Binding of NSL1 to MOF enhances MOF acetylation of histone H4 on lysine 16 and of the DNA binding transcription factor p53. #
NSRP1
(details)
25305 Nuclear speckle splicing regulatory protein 1 (Coiled-coil domain-containing protein 55) (Nuclear speckle-related protein 70) (NSrp70) 84081 Q9H0G5 NSRP1_HUMAN NSRP1_N PF09745 59-174, NRP1_C PF20427 310-489 Nsrp1 2144305 Q5NCR9 NSRP1_MOUSE MicroRNA protein coding host genes MicroRNA protein coding host genes RNA modification Alternative splicing 21296756 # RNA mRNA # 21296756 Regultes alternative splicing site selection New
NSUN2
(details)
25994 NOP2/Sun RNA methyltransferase 2 54888 Q08J23 NSUN2_HUMAN Methyltr_RsmB-F PF01189 170-341 Nsun2 107252 Q1HFZ0 NSUN2_MOUSE NSUN NOP2/Sun RNA methyltransferase family RNA modification RNA methylation 27444144 # RNA C of mRNA m5C 33622495 Regulates cell proliferation by methylation of 5`-UTR or 3`-UTR of CDK1 and p27 mRNA New
NSUN6
(details)
23529 NOP2/Sun RNA methyltransferase 6 221078 Q8TEA1 NSUN6_HUMAN Methyltr_RsmB-F PF01189 229-399 Nsun6 1921705 Q7TS68 NSUN6_MOUSE NSUN NOP2/Sun RNA methyltransferase family RNA modification RNA methylation 33330931 # RNA C of mRNA m5C 33330931 Marks translation termination by methylation of cytosine within the CTCCA motif New
NTMT1
(details)
23373 N-terminal Xaa-Pro-Lys N-methyltransferase 1 28989 Q9BV86 NTM1A_HUMAN Methyltransf_PK PF05891 8-222 Ntmt1 1913867 Q8R2U4 NTM1A_MOUSE METTL Methyltransferase like Histone modification writer Histone methylation 26543159 # protein CENP-A, CENP-B, RCC1 Km1/m2/m3, Rm, Pm 26543159 Regulates centromere function and mitosis New
NUP98
(details)
8068 Nuclear pore complex protein Nup98-Nup96 (EC 3.4.21.-) [Cleaved into: Nuclear pore complex protein Nup98 (98 kDa nucleoporin) (Nucleoporin Nup98) (Nup98); Nuclear pore complex protein Nup96 (96 kDa nucleoporin) (Nucleoporin Nup96) (Nup96)] 4928 P52948 NUP98_HUMAN Nup98_GLEBS PF21240 169-209, Nucleoporin2 PF04096 738-884, Nup96 PF12110 1331-1629 Nup98 109404 Q6PFD9 NUP98_MOUSE NUP Nucleoporins RNA modification Alternative splicing 28221134 # RNA mRNA # 28221134 Regulates alternative splicing of E1A New
OGT
(details)
8127 O-linked N-acetylglucosamine (GlcNAc) transferase 8473 O15294 OGT1_HUMAN TPR_11 PF13414 90-144 363-410 429-471, TPR_8 PF13181 157-190 225-258, TPR_1 PF00515 191-224 259-292, TPR_12 PF13424 293-360, Glyco_transf_41 PF13844 477-1016 Ogt 1339639 Q8CGY8 OGT1_MOUSE TTC Tetratricopeptide (TTC) repeat domain containing Histone modification write Histone GlcNAcylation 22121020 NSL histone H2BS112 H2BS112GlcNa 22121020 Histone H2B is GlcNAcylated at residue S112 by OGT in vitro and in living cells. Histone GlcNAcylation fluctuated in response to extracellular glucose through the hexosamine biosynthesis pathway (HBP). #
OIP5
(details)
20300 Opa interacting protein 5 11339 O43482 MS18B_HUMAN Yippee-Mis18 PF03226 76-182 Oip5 1917895 A2AQ14 MS18B_MOUSE # # Chromatin remodeling # 17199038 Mis18 histone CENPA # 17199038 Recruits CENPA to centromeres. Regulates normal chromosome segregation during mitosis. New
PADI1
(details)
18367 peptidyl arginine deiminase, type I 29943 Q9ULC6 PADI1_HUMAN PAD_N PF08526 2-114, PAD_M PF08527 115-277, PAD PF03068 285-662 Padi1 1338893 Q9Z185 PADI1_MOUSE PADI Peptidyl arginine deiminases Histone modification Histone citrullination 15087120 # histone H2AR, H3R, H4R H2ARci, H3Rci, H4Rci 15087120 Peptidylarginine deiminases (PADs) convert arginine residues in proteins into citrullines. They are suspected to be involved in multiple sclerosis and rheumatoid arthritis pathophysiology, and they play a role in epidermis homeostasis and possibly in regulation of gene expression through histone modification #
PADI2
(details)
18341 peptidyl arginine deiminase, type II 11240 Q9Y2J8 PADI2_HUMAN PAD_N PF08526 2-114, PAD_M PF08527 115-274, PAD PF03068 286-664 Padi2 1338892 Q08642 PADI2_MOUSE PADI Peptidyl arginine deiminases Histone modification Histone citrullination 15087120 # histone H2AR, H3R, H4R H2ARci, H3Rci, H4Rci 15087120 Peptidylarginine deiminases (PADs) convert arginine residues in proteins into citrullines. They are suspected to be involved in multiple sclerosis and rheumatoid arthritis pathophysiology, and they play a role in epidermis homeostasis and possibly in regulation of gene expression through histone modification #
PADI3
(details)
18337 peptidyl arginine deiminase, type III 51702 Q9ULW8 PADI3_HUMAN PAD_N PF08526 1-113, PAD_M PF08527 115-281, PAD PF03068 290-661 Padi3 1338891 Q9Z184 PADI3_MOUSE PADI Peptidyl arginine deiminases Histone modification Histone citrullination 15087120 # histone H2AR, H3R, H4R H2ARci, H3Rci, H4Rci 15087120 Peptidylarginine deiminases (PADs) convert arginine residues in proteins into citrullines. They are suspected to be involved in multiple sclerosis and rheumatoid arthritis pathophysiology, and they play a role in epidermis homeostasis and possibly in regulation of gene expression through histone modification #
PADI4
(details)
18368 peptidyl arginine deiminase, type IV 23569 Q9UM07 PADI4_HUMAN PAD_N PF08526 1-113, PAD_M PF08527 113-275, PAD PF03068 286-661 Padi4 1338898 Q9Z183 PADI4_MOUSE PADI Peptidyl arginine deiminases Histone modification Histone citrullination 15339660 # histone H2AR, H3R2, H3R8, H3R17, H3R26, H4R H2ARci, H3R2ci, H3R8ci, H3R17ci, H3R26ci, H4Rci 15339660 Deimination converts histone arginine to citrulline and antagonizes arginine methylation. Peptidyl arginine deiminase 4 (PADI4) specifically deiminates, arginine residues R2, R8, R17, and R26 in the H3 tail. Deimination by PADI4 prevents arginine methylation by CARM1. #
PAF1
(details)
25459 Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae) 54623 Q8N7H5 PAF1_HUMAN Paf1 PF03985 31-420 Paf1 1923988 Q8K2T8 PAF1_MOUSE # # Histone modification write cofactor Histone ubiquitination 16307923 # histone H2, H3 # # Involved in H2 and H3 ubiquitination. Involved in H2 and H3 ubiquitination. UniProt: PAF1C is involved in histone modifications such as ubiquitination of histone H2B and methylation on histone H3 'Lys-4' (H3K4me3). #
PAGR1
(details)
28707 PAXIP1 associated glutamate-rich protein 1 79447 Q9BTK6 PAGR1_HUMAN PAXIP1_C PF15364 88-226 2900092E17Rik 1914528 Q99L02 PAGR1_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 17500065 CHD8, MLL2/3, MLL4/WBP7, COMPASS-like MLL3,4 histone # # 17500065 Component of the MLL2/MLL3 complex (UniProt). #
PAK2
(details)
8591 p21 protein (Cdc42/Rac)-activated kinase 2 5062 Q13177 PAK2_HUMAN PBD PF00786 73-130, Pkinase PF00069 249-500 Pak2 1339984 Q8CIN4 PAK2_MOUSE # # Histone modification write Histone phosphorylation 21724829 # histone H4S47 H4S47ph 21724829 Phosphorylation of histone H4 Ser 47 (H4S47ph), catalyzed by the PAK2 kinase, promotes nucleosome assembly of H3.3-H4 and inhibits nucleosome assembly of H3.1-H4 by increasing the binding affinity of HIRA to H3.3-H4 and reducing association of CAF-1 with H3.1-H4. #
PARG
(details)
8605 poly (ADP-ribose) glycohydrolase 8505 Q86W56 PARG_HUMAN PARG_cat_N PF20811 582-699, PARG_cat_C PF05028 705-909 Parg 1347094 O88622 PARG_MOUSE # # Chromatin remodeling # 23102699, 21398629 # histone H3K9 # 23102699, 21398629 Reverses PARP activity. Both PAR and PARP-1 have an influence on PARG recruitment. Also recruitment through a PBD-mediated interaction of PARG with PCNA. #
PARP1
(details)
270 poly (ADP-ribose) polymerase 1 142 P09874 PARP1_HUMAN zf-PARP PF00645 11-88 115-198, PADR1_N PF21728 232-290, PADR1_Zn_ribbon PF08063 291-332, BRCT PF00533 387-463, WGR PF05406 554-632, PARP_reg PF02877 662-794, PARP PF00644 808-1007 Parp1 1340806 P11103 PARP1_MOUSE PARP Poly (ADP-ribose) polymerases Chromatin remodeling # 20926656, 17177976, 17396150 # histone H1 # 20926656 Histone H1 poly[ADP]-ribosylation = PARP1, and its loss at specific loci, may be an epigenetic mechanism involved in the reprogramming of neuronal gene expression required for memory consolidation. #
PARP2
(details)
272 poly (ADP-ribose) polymerase 2 10038 Q9UGN5 PARP2_HUMAN WGR PF05406 116-194, PARP_reg PF02877 231-363, PARP PF00644 376-577 Parp2 1341112 O88554 PARP2_MOUSE PARP Poly (ADP-ribose) polymerases Chromatin remodeling cofactor # 20092359 # # # # 20092359 PARP activity is involved in processes such as chromatin remodeling. Component of a base excision repair (BER) complex, containing at least XRCC1, PARP1, POLB and LRIG3. Homo- and heterodimer with PARP1. #
PARP3
(details)
273 poly (ADP-ribose) polymerase family, member 3 10039 Q9Y6F1 PARP3_HUMAN WGR PF05406 66-144, PARP_reg PF02877 181-320, PARP PF00644 334-532 Parp3 1891258 # # PARP Poly (ADP-ribose) polymerases Polycomb group (PcG) protein # 16924674 # # # # 16924674 PARP-3 is part of Polycomb group protein complexes. #
PAXIP1
(details)
8624 PAX interacting (with transcription-activation domain) protein 1 22976 Q6ZW49 PAXI1_HUMAN PTCB-BRCT PF12738 102-165 710-771, BRCT PF00533 604-684, RTT107_BRCT_5 PF16770 860-947, BRCT_2 PF16589 973-1062 Paxip1 1890430 Q6NZQ4 PAXI1_MOUSE # # Histone modification write cofactor Histone methylation 17178841 CHD8, MLL2/3, MLL4/WBP7, COMPASS-like MLL3,4 histone H3K4 H3K4me3 17178841 ALR (MLL2) is a member of the human MLL family, which belongs to a larger SET1 family of histone methyltransferases. ALR is present within a stable multiprotein complex containing a cohort of proteins shared with other SET1 family complexes and several unique components, such as PTIP and the jumonji family member UTX. #
PBK
(details)
18282 PDZ binding kinase 55872 Q96KB5 TOPK_HUMAN Pkinase PF00069 35-317 Pbk 1289156 Q9JJ78 TOPK_MOUSE # # Histone modification write Histone phosphorylation 16982762 # histone H3S10 H3S10ph # PBK/TOPK can phosphorylate histone H3 at Ser10 in vitro and in vivo, and mediate its growth-promoting effect through histone H3 modification. Can phosphorylate histone H3 at Ser10 in vitro and in vivo. #
PBRM1
(details)
30064 polybromo 1 55193 Q86U86 PB1_HUMAN Bromodomain PF00439 64-136 200-272 400-470 541-608 677-746 790-865, BAH PF01426 957-1074 1156-1272, HMG_box PF00505 1379-1441 Pbrm1 1923998 Q8BSQ9 PB1_MOUSE # # Histone modification read # 22464331 PBAF, SWI/SNF BRM-BRG1 histone H3 # 22464331 Fig. 5 in the reference (PBRM1 =PB1). #
PCGF1
(details)
17615 polycomb group ring finger 1 84759 Q9BSM1 PCGF1_HUMAN zf-C3HC4_2 PF13923 47-85, RAWUL PF16207 190-253 Pcgf1 1917087 Q8R023 PCGF1_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 15620699 PRC1, BCOR # # # 15620699 Nervous system polycomb 1 (NSPc1=PCGF1) shares high homology with vertebrate PcG proteins Mel-18 and Bmi-1. #
PCGF2
(details)
12929 polycomb group ring finger 2 7703 P35227 PCGF2_HUMAN zf-C3HC4_2 PF13923 18-56, RAWUL PF16207 164-228 Pcgf2 99161 P23798 PCGF2_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 21282530 PRC1 # # # 21282530 CBX7 and CBX8, two Polycomb (Pc) homologs that repress INK4a, both participate in PRC1-like complexes with at least two Posterior sex combs (Psc) proteins, MEL18 =PCGF2 and BMI1. #
PCGF3
(details)
10066 polycomb group ring finger 3 10336 Q3KNV8 PCGF3_HUMAN zf-C3HC4_2 PF13923 17-55, RAWUL PF16207 172-236 Pcgf3 1916837 Q8BTQ0 PCGF3_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 21282530 PRC1, RING2-FBRS # # # 21282530 There are multiple orthologs of the archetypal PRC1 proteins; five Pc proteins (CBX2, CBX4, CBX6, CBX7 and CBX8), six Psc proteins (BMI1, MEL18, MBLR, NSPC1, RNF159 and RNF3=PCGF3). #
PCGF5
(details)
28264 polycomb group ring finger 5 84333 Q86SE9 PCGF5_HUMAN zf-C3HC4_2 PF13923 18-56, RAWUL PF16207 163-216 Pcgf5 1923505 Q3UK78 PCGF5_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 21282530 PRC1, RING2-FBRS # # # 21282530 There are multiple orthologs of the archetypal PRC1 proteins; five Pc proteins (CBX2, CBX4, CBX6, CBX7 and CBX8), six Psc proteins (BMI1, MEL18, MBLR, NSPC1, RNF159==PCGF5 and RNF3). #
PCGF6
(details)
21156 polycomb group ring finger 6 84108 Q9BYE7 PCGF6_HUMAN zf-C3HC4_2 PF13923 134-172, RAWUL PF16207 275-323 Pcgf6 1918291 Q99NA9 PCGF6_MOUSE RNF, PCGF RING-type (C3HC4) zinc fingers, Polycomb group ring fingers Polycomb group (PcG) protein # 21282530 PRC1, RING2-L3MBTL2 # # # 21282530 There are multiple orthologs of the archetypal PRC1 proteins; five Pc proteins (CBX2, CBX4, CBX6, CBX7 and CBX8), six Psc proteins (BMI1, MEL18, MBLR=PCGF6, NSPC1, RNF159 and RNF3). #
PCNA
(details)
8729 proliferating cell nuclear antigen 5111 P12004 PCNA_HUMAN PCNA_N PF00705 1-124, PCNA_C PF02747 127-254 Pcna 97503 P17918 PCNA_MOUSE # # Chromatin remodeling # 12786946 # histone H2A, H2B # 12786946 PCNA forms a ternary complex with DNTTIP2 and core histone. #
PDP1
(details)
9279 pyruvate dehyrogenase phosphatase catalytic subunit 1 54704 Q9P0J1 PDP1_HUMAN PP2C PF00481 202-439 Pdp1 2685870 Q3UV70 PDP1_MOUSE PPM Serine/threonine phosphatases / Protein phosphatases, Mg2+/Mn2+ dependent Histone modification read # 22150589 # histone, DNA H4K20me3 # 22150589 The PWWP domain of Pdp1 binds not only to H4K20me3 (trimethylated Lys(20) of histone H4), but also to dsDNA (double-stranded DNA) via an aromatic cage and a positively charged area respectively. Pdp1 is a PWWP (proline-tryptophan-tryptophan-proline) domain-containing protein, which associates with Set9 to regulate its chromatin localization and methyltransferase activity towards H4K20. #
PELP1
(details)
30134 proline, glutamate and leucine rich protein 1 27043 Q8IZL8 PELP1_HUMAN RIX1 PF08167 75-231, PELP1_HEAT PF08166 425-473 558-635 Pelp1 1922523 Q9DBD5 PELP1_MOUSE # # Histone modification read, Histone modification write cofactor Histone methylation, Histone acetylation 15456770, 11481323 CHD8, MLL2/3, MLL4/WBP7 histone H1, H3, H4 # 15456770, 15374949 C-terminal glutamic acid-abundant region bound to the hypoacetylated histones H3 and H4 and prevents them from becoming substrates of histone acetyltransferase. Thus PELP1 promotes and maintains the hypoacetylated state of histones at the target genomic site, and ER binding reverses its role to hyperacetylate histones through an as yet unidentified mechanism. #
PHC1
(details)
3182 polyhomeotic homolog 1 (Drosophila) 1911 P78364 PHC1_HUMAN zf-FCS_1 PF21319 798-827, PHC2_SAM_assoc PF16616 829-936, SAM_1 PF00536 939-1002 Phc1 103248 Q64028 PHC1_MOUSE SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # 16024804 PRC1 # # # 16024804 Phc1 plays a pivotal role in mediating the PcG-dependent bridging of distant chromatin templates. #
PHC2
(details)
3183 polyhomeotic homolog 2 (Drosophila) 1912 Q8IXK0 PHC2_HUMAN zf-FCS_1 PF21319 640-669, PHC2_SAM_assoc PF16616 670-789, SAM_1 PF00536 791-856 Phc2 1860454 Q9QWH1 PHC2_MOUSE SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # 16024804 PRC1 # # # 16024804 Phc2 is involved in the anterior-posterior (A-P) specification of the vertebral column through the regulation of Hox gene expression, as well as other PcG proteins. #
PHC3
(details)
15682 polyhomeotic homolog 3 (Drosophila) 80012 Q8NDX5 PHC3_HUMAN zf-FCS_1 PF21319 783-812, SAM_1 PF00536 919-981 Phc3 2181434 Q8CHP6 PHC3_MOUSE SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # 16024804 PRC1 # # # 16024804 All known components of the PRC1 protein complex are found stably associated with CBX proteins. In particular, all the human Psc orthologs (BMI1, PCGF1, PCGF2, PCGF3, PCGF5, and PCGF6), the Ph orthologs (PHC1, PHC2, and PHC3). #
PHF1
(details)
8919 PHD finger protein 1 5252 O43189 PHF1_HUMAN Tudor_2 PF18104 34-69, PHD PF00628 90-139, Mtf2_C PF14061 534-564 Phf1 98647 Q9Z1B8 PHF1_MOUSE TDRD, PHF Tudor domain containing, Zinc fingers, PHD-type Polycomb group (PcG) protein # 18086877 PRC2 # # # 18086877 The EED-EZH2 complex, containing the core subunits EZH2, EED, SUZ12, and RbAp48, functions as a histone H3K27-specific methyltransferase. The related EED-EZH2 protein complex is distinguished from the previous complex by the presence of another PcG protein, hPHF1. #
PHF10
(details)
18250 PHD finger protein 10 55274 Q8WUB8 PHF10_HUMAN PHD PF00628 380-433 436-478 Phf10 1919307 Q9D8M7 PHF10_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling # 20068294 npBAF, SWI/SNF BRM-BRG1 chromatin # # 20068294 PHF10 belongs to a family of plant homeodomain (PHD) containing proteins which play a role in transcription regulation via chromatin remodeling. #
PHF12
(details)
20816 PHD finger protein 12 57649 Q96QT6 PHF12_HUMAN PHD PF00628 59-102 273-318, PHF12_MRG_bd PF16737 201-236 Phf12 1924057 Q5SPL2 PHF12_MOUSE PHF Zinc fingers, PHD-type Histone modification erase cofactor Histone acetylation 11390640 # histone # # 11390640 Pf1 =PHF12 is a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. #
PHF13
(details)
22983 PHD finger protein 13 148479 Q86YI8 PHF13_HUMAN PHD_5 PF20826 226-279 Phf13 2446217 Q8K2W6 PHF13_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 19638409 # histone H3K4me3 # 19638409 Interacts with histone H3 that is trimethylated at 'Lys-4' (H3K4me3). #
PHF14
(details)
22203 PHD finger protein 14 9678 O94880 PHF14_HUMAN PHD_2 PF13831 334-359, zf-HC5HC2H_2 PF13832 384-498, PHD PF00628 728-776 871-918 Phf14 1923539 Q9D4H9 PHF14_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 23688586 # histone H2A, H2B, H3 H2Aac, H2Bac, H3ac 23688586 PHF14α is bound to histones. Histone H3, H2A, and H2B can be co-immunoprecipitated with GFP-PHF14α, but not with GFP alone, from total cell lysate. Histones H3, H2A, and H2B can be pulled down together with non-tagged exogenous PHF14α using an anti-PHF14 antibody. #
PHF19
(details)
24566 PHD finger protein 19 26147 Q5T6S3 PHF19_HUMAN Tudor_2 PF18104 43-78, PHD PF00628 99-148, Mtf2_C PF14061 531-578 Phf19 1921266 Q9CXG9 PHF19_MOUSE TDRD, PHF Tudor domain containing, Zinc fingers, PHD-type Chromatin remodeling, Histone modification write cofactor Histone acetylation 15563832 PRC2 histone # # 15563832 Based on motifs identified within the hPCL3 =PHF19 open reading frames, hPCL3 proteins are likely to be nuclear proteins that regulate transcription and/or chromatin structure. #
PHF2
(details)
8920 PHD finger protein 2 5253 O75151 PHF2_HUMAN PHD PF00628 8-53, JmjC PF02373 237-336, JHD PF17811 340-443 Phf2 1338034 Q9WTU0 PHF2_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 21532585 # histone H3K9me2 H3K9 21532585 The protein kinase A (PKA)-dependent histone lysine demethylase complex, PHF2-ARID5B. PHF2, a jmjC demethylase, is enzymatically inactive by itself, but becomes an active H3K9Me2 demethylase through PKA-mediated phosphorylation. #
PHF20
(details)
16098 PHD finger protein 20 51230 Q9BVI0 PHF20_HUMAN Tudor_3 PF18115 89-136, PHF20_AT-hook PF12618 147-282, PHD_5 PF20826 647-699 Phf20 2444148 Q8BLG0 PHF20_MOUSE TDRD, PHF Tudor domain containing, Zinc fingers, PHD-type Histone modification write Histone acetylation 22449972 NSL, CHD8, MLL2/3, MLL4/WBP7 histone H4 H4ac 22449972 The second Tudor domain of PHF20 displays preference for dimethylated histones substrates. #
PHF20L1
(details)
24280 PHD finger protein 20-like 1 51105 A8MW92 P20L1_HUMAN Tudor_2 PF18104 90-124, PHD20L1_u1 PF16660 309-439, PHD_5 PF20826 675-729 Phf20l1 2444412 Q8CCJ9 P20L1_MOUSE TDRD, PHF Tudor domain containing, Zinc fingers, PHD-type Histone modification read # 21423274 # histone H3K4me # 21423274 Table 1 in the reference. Via its PWWP domain it specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair rea #
PHF21A
(details)
24156 PHD finger protein 21A 51317 Q96BD5 PF21A_HUMAN PHD PF00628 491-532 Phf21a 2384756 Q6ZPK0 PF21A_MOUSE PHF Zinc fingers, PHD-type Histone modification erase cofactor Histone methylation 16140033 BHC, LSD-CoREST histone # # 16140033 LSD1 is a recently identified human lysine (K)-specific histone demethylase. LSD1 is associated with HDAC1/2; CoREST, a SANT domain-containing corepressor; and BHC80=PHF21A, a PHD domain-containing protein, among others. #
PHF8
(details)
20672 PHD finger protein 8 23133 Q9UPP1 PHF8_HUMAN PHD PF00628 44-89, JmjC PF02373 270-370, JHD PF17811 374-481 Phf8 2444341 Q80TJ7 PHF8_MOUSE KDM, PHF Chromatin-modifying enzymes / K-demethylases, Zinc fingers, PHD-type Histone modification erase Histone methylation 21423274 # histone H3K9me1, H3K9me2, H3K27me2, H4K20me1, H3K36me2, H3K36me3, H3K4me3 H3K9, H3K27, H4K20, H3K36, H3K4 21423274 Table 1 in the reference. Via its PWWP domain it specifically binds trimethylated 'Lys-36' of histone H3 (H3K36me3): early recruitment to chromatin to be replicated allowing a quick identification of mismatch repair to initiate the DNA mismatch repair rea #
PHIP
(details)
15673 pleckstrin homology domain interacting protein 55023 Q8WWQ0 PHIP_HUMAN WD40 PF00400 179-211 214-252 259-298 357-393 456-495, Bromodomain PF00439 1166-1250 1327-1404 Phip 1932404 Q8VDD9 PHIP_MOUSE WDR, DCAF WD repeat domain containing, DDB1 and CUL4 associated factors Histone modification read # 22464331 # histone H3 # 22464331 Fig. 5 in the reference. #
PIWIL4
(details)
18444 piwi-like RNA-mediated gene silencing 4 143689 Q7Z3Z4 PIWL4_HUMAN PAZ PF02170 272-405, Piwi PF02171 546-837 Piwil4 3041167 Q8CGT6 PIWL4_MOUSE AGO Argonaute/PIWI family Chromatin remodeling, Histone modification erase cofactor Histone methylation 17544373 # histone H3K9 # 17544373 Induced histone H3 lysine 9 methylation at the p16(Ink4a) (CDKN2A) locus. Suggests that PIWIL4 plays important roles in the chromatin-modifying pathway in human somatic cells. #
PKM
(details)
9021 pyruvate kinase, muscle 5315 P14618 KPYM_HUMAN PK PF00224 43-375, PK_C PF02887 411-528 Pkm 97591 P52480 KPYM_MOUSE # # Histone modification write cofactor Histone phosphorylation 24706538 # histone H3S10, H3S28, H2BS32 H3S10ph, H3S28ph, H2BS32ph, H3T11ph 24706538 Transcriptional activation by epidermal growth factor (EGF) is mediated via phosphorylation of H3S10, H3S28, and H2BS32 by Rsk-2 and PKM2. #
PKN1
(details)
9405 protein kinase N1 5585 Q16512 PKN1_HUMAN HR1 PF02185 38-98 127-194 214-278, Pkinase PF00069 616-874, Pkinase_C PF00433 895-937 Pkn1 108022 P70268 PKN1_MOUSE # # Histone modification write Histone phosphorylation 18066052 # histone H3T11 H3T11ph 18066052 Protein-kinase-C-related kinase 1 (PRK1=PKN1) phosphorylates histone H3 at threonine 11 (H3T11) upon ligand-dependent recruitment to androgen receptor target genes. #
POGZ
(details)
18801 pogo transposable element with ZNF domain 23126 Q7Z3K3 POGZ_HUMAN HTH_Tnp_Tc5 PF03221 1025-1082, DDE_1 PF03184 1157-1287 Pogz 2442117 Q8BZH4 POGZ_MOUSE # # Histone modification read Histone methylation 20562864, 20850016 # histone H3K9me3 # # Part of a H3K9me3 reader complex; modulates dissociation of HP1alpha. #
POLE3
(details)
13546 polymerase (DNA directed), epsilon 3, accessory subunit 54107 Q9NRF9 DPOE3_HUMAN CBFD_NFYB_HMF PF00808 9-73 Pole3 1933378 Q9JKP7 DPOE3_MOUSE POL DNA polymerases Histone chaperone # 10880450 CHRAC histone # # 10880450 The human homologues of two novel putative histone-fold proteins in Drosophila CHRAC are present in HuCHRAC. The two human histone-fold proteins form a stable complex that binds naked DNA but not nucleosomes. #
PPARGC1A
(details)
9237 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 10891 Q9UBK2 PRGC1_HUMAN RRM_1 PF00076 679-739 Ppargc1a 1342774 O70343 PRGC1_MOUSE RBM RNA binding motif (RRM) containing Histone modification cofactor # 10558993 # histone # # # PPARgamma coactivator-1 (PGC-1) promotes transcription through the assembly of a complex that includes the histone acetyltransferases steroid receptor coactivator-1 (SRC-1). Promotes transcription through the assembly of a complex that includes HAT p300. #
PPM1G
(details)
9278 protein phosphatase, Mg2+/Mn2+ dependent, 1G 5496 O15355 PPM1G_HUMAN PP2C PF00481 26-108 303-489 Ppm1g 106065 Q61074 PPM1G_MOUSE PPM Serine/threonine phosphatases / Protein phosphatases, Mg2+/Mn2+ dependent Chromatin remodeling # 23723158 # chromatin # # 23723158 Together with CHRAC1, ACF1 and ISWI/SNF2H proteins, it forms the ISWI chromatin-remodeling complex, CHRAC (UniProt). #
PPP2CA
(details)
9299 protein phosphatase 2, catalytic subunit, alpha isozyme 5515 P67775 PP2AA_HUMAN Metallophos PF00149 51-244 Ppp2ca 1321159 P63330 PP2AA_MOUSE PPP Serine/threonine phosphatases / Protein phosphatase, catalytic subunits Histone modification write Histone phosphorylation 18758438 # histone H2AX H2AXph 18758438 PP2A =PPP2CA (rather than PP4) has been implicated as a mammalian γH2AX phosphatase. #
PPP4C
(details)
9319 protein phosphatase 4, catalytic subunit 5531 P60510 PP4C_HUMAN Metallophos PF00149 48-241 Ppp4c 1891763 P97470 PP4C_MOUSE PPP Serine/threonine phosphatases / Protein phosphatase, catalytic subunits Histone modification erase Histone phosphorylation 18758438 PPP4C-PPP4R2-PPP4R3A histone H2AXS139ph H2AXS139 18758438 PP4 and PP2A counteract phosphorylation of H2AX. #
PPP4R2
(details)
18296 protein phosphatase 4, regulatory subunit 2 151987 Q9NY27 PP4R2_HUMAN PPP4R2 PF09184 5-309 Ppp4r2 3027896 Q0VGB7 PP4R2_MOUSE PPP4R Serine/threonine phosphatases / Protein phosphatase 4, regulatory subunits Histone modification cofactor # 18614045 PPP4C-PPP4R2-PPP4R3A histone # # # Regulatory subunit of serine/threonine-protein phosphatase 4 (PP4) complex. PPARgamma coactivator-1 (PGC-1) promotes transcription through the assembly of a complex that includes the histone acetyltransferases steroid receptor coactivator-1 #
PQBP1
(details)
9330 Polyglutamine-binding protein 1 (PQBP-1) (38 kDa nuclear protein containing a WW domain) (Npw38) (Polyglutamine tract-binding protein 1) 10084 O60828 PQBP1_HUMAN Pqbp1 1859638 Q91VJ5 PQBP1_MOUSE # # RNA modification Alternative splicing 23512658 # RNA mRNA # 23512658 Regulates alternative splcing of BCL-X and another apoptotic factors. New
PRDM1
(details)
9346 PR domain containing 1, with ZNF domain 639 O75626 PRDM1_HUMAN PRDM2_PR PF21549 95-209, zf-C2H2 PF00096 575-597 603-625 631-653 659-681 Prdm1 99655 Q60636 PRDM1_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write cofactor Histone methylation 23856557 # histone H3K9 H3K9me 23856557 The Prdm family may possess HKMTase properties. Some Prdms show intrinsic HKMTase activity (Prdm2, Prdm3, Prdm8, Prdm9, and Prdm16). In addition, Prdm1, Prdm5, and Prdm6 lack intrinsic HKMTase activity, but instead recruit G9a/Ehmt2/KMT1C, a strong mammalian histone H3 lysine 9 (H3K9) methyltransferase, to mediate HKMTase activity (see Fog et al., 2012 for a review). Another structural feature is that the Prdm family has multiple kruppel-type zinc finger (ZF) domains in the C-terminus involved in sequence-specific DNA binding and protein-protein interactions. #
PRDM11
(details)
13996 PR domain containing 11 56981 Q9NQV5 PRD11_HUMAN PRDM2_PR PF21549 152-268 Prdm11 2685553 A2AGX3 PRD11_MOUSE # # Histone modification write Histone methylation 23508829 # histone # # 23508829 The PR (PRDI-BF1 and RIZ) domain is 20–30% identical to the SET module, which is directly responsible for the catalytic activity of several histone lysine-methyltransferases . #
PRDM12
(details)
13997 PR domain containing 12 59335 Q9H4Q4 PRD12_HUMAN PRDM2_PR PF21549 89-213, zf-C2H2 PF00096 244-265 271-293 Prdm12 2685844 A2AJ77 PRD12_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write cofactor Histone methylation 23856557 # histone H3K9 H3K9me 23856557 Prdm12 recruits G9a to methylate histone H3 on lysine 9 through its zinc finger domains. #
PRDM13
(details)
13998 PR domain containing 13 59336 Q9H4Q3 PRD13_HUMAN PRDM2_PR PF21549 11-120, zf-C2H2 PF00096 137-159 574-595 601-623 630-653 Prdm13 2448528 E9PZZ1 PRD13_MOUSE # # Histone modification write Histone methylation 24370451 # histone # # # PRDM13 identified as a histone methyltransferase. #
PRDM14
(details)
14001 PR domain containing 14 63978 Q9GZV8 PRD14_HUMAN PRDM2_PR PF21549 262-377, zf-C2H2 PF00096 461-483 489-511 546-568 Prdm14 3588194 E9Q3T6 PRD14_MOUSE ZNF Zinc fingers, C2H2-type DNA modification DNA demethylation 24335252 # DNA mC # 24335252 PRDM14 promotes active DNA demethylation. #
PRDM16
(details)
14000 PR domain containing 16 63976 Q9HAZ2 PRD16_HUMAN PRDM2_PR PF21549 84-212, zf-C2H2_6 PF13912 230-250, zf-C2H2 PF00096 281-303 309-331 337-360 366-388 394-416 424-443 951-973 979-1002 1008-1030 Prdm16 1917923 A2A935 PRD16_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write cofactor, TF Histone methylation, TF repressor 12816872, 23856557 # histone, DNA H3K9, DNA motif H3K9me 23856557 The Prdm family may possess HKMTase properties. Some Prdms show intrinsic HKMTase activity (Prdm2, Prdm3, Prdm8, Prdm9, and Prdm16). In addition, Prdm1, Prdm5, and Prdm6 lack intrinsic HKMTase activity, but instead recruit G9a/Ehmt2/KMT1C, a strong mammalian histone H3 lysine 9 (H3K9) methyltransferase, to mediate HKMTase activity (see Fog et al., 2012 for a review). Another structural feature is that the Prdm family has multiple kruppel-type zinc finger (ZF) domains in the C-terminus involved in sequence-specific DNA binding and protein-protein interactions. #
PRDM2
(details)
9347 PR domain containing 2, with ZNF domain 7799 Q13029 PRDM2_HUMAN PRDM2_PR PF21549 30-144, zf-C2H2 PF00096 360-382 390-412, zf-C2H2_6 PF13912 483-506 1455-1475 Prdm2 107628 # # KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 20084102 # histone H3K9 H3K9me 20084102 The structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. #
PRDM4
(details)
9348 PR domain containing 4 11108 Q9UKN5 PRDM4_HUMAN zf_PR_Knuckle PF18445 366-404, PRDM2_PR PF21549 414-537, zf-C2H2 PF00096 618-640 646-668 674-696 Prdm4 1920093 Q80V63 PRDM4_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write Histone methylation 23048031 # histone H4R3 H4R3me2s 23048031 Transcription factor positive regulatory domain 4 (PRDM4) recruits protein arginine methyltransferase 5 (PRMT5) to mediate histone arginine methylation and control neural stem cell proliferation and differentiation. #
PRDM5
(details)
9349 PR domain containing 5 11107 Q9NQX1 PRDM5_HUMAN PRDM2_PR PF21549 8-127, zf-C2H2 PF00096 199-219 262-287 295-317 320-342 376-398 404-426 432-455 489-511 517-539 545-567 573-595 602-625, zf-met PF12874 234-254, zf-C2H2_6 PF13912 348-370 461-483 Prdm5 1918029 Q9CXE0 PRDM5_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write Histone methylation 23856557 # histone H3K9 H3K9me 23856557 Some Prdms show intrinsic HKMTase activity (Prdm2, Prdm3, Prdm8, Prdm9, and Prdm16). In addition, Prdm1, Prdm5, and Prdm6 lack intrinsic HKMTase activity, but instead recruit G9a/Ehmt2/KMT1C, a strong mammalian histone H3 lysine 9 (H3K9) methyltransferase, to mediate HKMTase activity (see Fog et al., 2012 for a review). Another structural feature is that the Prdm family has multiple kruppel-type zinc finger (ZF) domains in the C-terminus involved in sequence-specific DNA binding and protein-protein interactions. #
PRDM6
(details)
9350 PR domain containing 6 93166 Q9NQX0 PRDM6_HUMAN PRDM2_PR PF21549 255-374, zf-C2H2 PF00096 501-523 529-551 557-577 Prdm6 2684938 Q3UZD5 PRDM6_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write Histone methylation 17898714, 16537907 # histone H3R2, H4K20 H3R2me1, H3R2me2, H4K20me1 17898714, 18057026 The arginine methyltransferase PRMT6 catalyses H3R2 di-methylation in vitro and controls global levels of H3R2me2a in vivo. H3R2 methylation by PRMT6 was prevented by the presence of H3K4me3 on the H3 tail. PRISM =PRDM6 acts as a transcriptional repressor by interacting with class I histone deacetylases and the G9a histone methyltransferase, thereby identifying PRISM as a novel SMC-restricted epigenetic regulator. #
PRDM7
(details)
9351 PR domain containing 7 11105 Q9NQW5 PRDM7_HUMAN KRAB PF01352 28-65, SSXRD PF09514 169-204, PRDM2_PR PF21549 245-365 # # # # ZNF, ZKRAB Zinc fingers, C2H2-type Histone modification write Histone methylation # # histone # # # Probable histone methyltransferase (by similarity). #
PRDM8
(details)
13993 PR domain containing 8 56978 Q9NQV8 PRDM8_HUMAN PRDM2_PR PF21549 26-138, zf-C2H2_4 PF13894 667-688 Prdm8 1924880 Q8BZ97 PRDM8_MOUSE # # Histone modification write Histone methylation 23856557 # histone # # 23856557 Some Prdms show intrinsic HKMTase activity (Prdm2, Prdm3, Prdm8, Prdm9, and Prdm16). In addition, Prdm1, Prdm5, and Prdm6 lack intrinsic HKMTase activity, but instead recruit G9a/Ehmt2/KMT1C, a strong mammalian histone H3 lysine 9 (H3K9) methyltransferase, to mediate HKMTase activity (see Fog et al., 2012 for a review). Another structural feature is that the Prdm family has multiple kruppel-type zinc finger (ZF) domains in the C-terminus involved in sequence-specific DNA binding and protein-protein interactions. #
PRDM9
(details)
13994 PR domain containing 9 56979 Q9NQV7 PRDM9_HUMAN KRAB PF01352 32-62, SSXRD PF09514 89-97, PRDM2_PR PF21549 246-366, zf-C2H2_5 PF21225 390-411, zf-C2H2 PF00096 552-574 580-602 608-630 636-658 670-714 720-742 748-770 776-798 804-826 832-854 860-882 Prdm9 2384854 Q96EQ9 PRDM9_MOUSE ZKRAB, ZNF Zinc fingers, C2H2-type Histone modification write Histone methylation 17916234 # histone H3K4 H3K4me3 17916234 Meisetz, the mouse ortholog of the long PRDM9 isoform, is able to activate the progression into meiosis through the trimethylation of the lysine 4 on histone H3. #
PRKAA1
(details)
9376 protein kinase, AMP-activated, alpha 1 catalytic subunit 5562 Q13131 AAPK1_HUMAN Pkinase PF00069 27-279, AMPK_alpha_AID PF21147 299-343, AdenylateSensor PF16579 406-479 Prkaa1 2145955 Q5EG47 AAPK1_MOUSE # # Histone modification write Histone phosphorylation 20647423 # histone H2BS36 H2BS36ph # In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph), leading to promote transcription. Part of AMPK. #
PRKAA2
(details)
9377 protein kinase, AMP-activated, alpha 2 catalytic subunit 5563 P54646 AAPK2_HUMAN Pkinase PF00069 16-268, AMPK_alpha_AID PF21147 288-333, AdenylateSensor PF16579 401-477 Prkaa2 1336173 Q8BRK8 AAPK2_MOUSE # # Histone modification write Histone phosphorylation 20647423 # histone H2BS36 H2BS36ph # In response to stress, phosphorylates 'Ser-36' of histone H2B (H2BS36ph) as a part of AMPK. #
PRKAB1
(details)
9378 protein kinase, AMP-activated, beta 1 non-catalytic subunit 5564 Q9Y478 AAKB1_HUMAN AMPK1_CBM PF16561 79-160, AMPKBI PF04739 200-269 Prkab1 1336167 Q9R078 AAKB1_MOUSE # # Histone modification write cofactor Histone phosphorylation 20647423 # histone # # # Non-catalytic subunit of AMP-activated protein kinase (AMPK). #
PRKAB2
(details)
9379 protein kinase, AMP-activated, beta 2 non-catalytic subunit 5565 O43741 AAKB2_HUMAN AMPK1_CBM PF16561 78-160, AMPKBI PF04739 202-271 Prkab2 1336185 Q6PAM0 AAKB2_MOUSE # # Histone modification write cofactor Histone phosphorylation 20647423 # histone # # # Non-catalytic subunit of AMP-activated protein kinase (AMPK). #
PRKAG1
(details)
9385 protein kinase, AMP-activated, gamma 1 non-catalytic subunit 5571 P54619 AAKG1_HUMAN CBS PF00571 45-96 127-176 203-249 276-323 Prkag1 108411 O54950 AAKG1_MOUSE # # Histone modification write cofactor Histone phosphorylation 20647423 # histone # # # AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK). #
PRKAG2
(details)
9386 protein kinase, AMP-activated, gamma 2 non-catalytic subunit 51422 Q9UGJ0 AAKG2_HUMAN CBS PF00571 277-328 359-409 435-481 510-555 Prkag2 1336153 Q91WG5 AAKG2_MOUSE # # Histone modification write cofactor Histone phosphorylation 20647423 # histone # # # AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK). #
PRKAG3
(details)
9387 protein kinase, AMP-activated, gamma 3 non-catalytic subunit 53632 Q9UGI9 AAKG3_HUMAN CBS PF00571 283-332 358-404 430-478 Prkag3 1891343 Q8BGM7 AAKG3_MOUSE # # Histone modification write cofactor Histone phosphorylation 20647423 # histone # # # AMP/ATP-binding subunit of AMP-activated protein kinase (AMPK). #
PRKCA
(details)
9393 protein kinase C, alpha 5578 P17252 KPCA_HUMAN C1_1 PF00130 37-86 102-152, C2 PF00168 172-276, Pkinase PF00069 341-584, Pkinase_C PF00433 624-658 Prkca 97595 P20444 KPCA_MOUSE # # Histone modification write cofactor Histone phosphorylation 22796964 # histone H3 # # Modifies H3, but may be a quite general kinase. #
PRKCB
(details)
9395 protein kinase C, beta 5579 P05771 KPCB_HUMAN C1_1 PF00130 37-86 102-153, C2 PF00168 172-277, Pkinase PF00069 344-596, Pkinase_C PF00433 621-662 Prkcb 97596 P68404 KPCB_MOUSE # # Histone modification write Histone methylation 20228790 # histone H3T6 H3T6ph 20228790 Phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. #
PRKCD
(details)
9399 protein kinase C, delta 5580 Q05655 KPCD_HUMAN PKC_C2 PF21494 3-112, C1_1 PF00130 159-209 231-281, Pkinase PF00069 350-603, Pkinase_C PF00433 624-665 Prkcd 97598 P28867 KPCD_MOUSE # # Histone modification # 17984964 # histone # # # Cross-regulation of histone modifications #
PRKDC
(details)
9413 protein kinase, DNA-activated, catalytic polypeptide 5591 P78527 PRKDC_HUMAN DNA-PKcs_N PF20500 15-874, DNAPKcs_CC1-2 PF20502 1001-1796, DNAPKcs_CC3 PF08163 1596-1947 1825-2207, DNAPKcs_CC5 PF19704 2131-2890, FAT PF02259 2943-3468, PI3_PI4_kinase PF00454 3749-4013, FATC PF02260 4098-4128 Prkdc 104779 P97313 PRKDC_MOUSE # # Histone modification write Histone phosphorylation 14627815 # histone H2AXS139, H2AFXS139 H2AXS139ph, H2AFXS139ph 14627815 Acetylation largely enhances the phosphorylation of H2AX by DNA-PK=PRKDC, and this acetylation effect is observed when H2AX exists in the context of nucleosomes but not in a free form. #
PRMT1
(details)
5187 protein arginine methyltransferase 1 3276 Q99873 ANM1_HUMAN Methyltransf_25 PF13649 92-189, domain PF22528 194-358 Prmt1 107846 Q9JIF0 ANM1_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 11387442 # histone H4R3 H4R3me1, H4R3me2a 11387442 PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. #
PRMT2
(details)
5186 protein arginine methyltransferase 2 3275 P55345 ANM2_HUMAN SH3_1 PF00018 36-82, MTS PF05175 131-210, domain PF22528 244-415 Prmt2 1316652 Q9R144 ANM2_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 19405910 # histone H4 H4me 19405910 PRMT2 activity is substantially lower than PRMT1 in vitro, but both enzymes selectively methylate histone H4 and PRMT2, like PRMT1, may act as a transcription co-activator through this modification. #
PRMT5
(details)
10894 protein arginine methyltransferase 5 10419 O14744 ANM5_HUMAN PRMT5_TIM PF17285 36-290, PRMT5 PF05185 299-464, PRMT5_C PF17286 467-635 Prmt5 1351645 Q8CIG8 ANM5_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 18404153 methylosome histone H3R8, H4R3 H3R8me, H4R3me 18404153 PRMT5 regulates gene transcription by methylating histones H3 (R8) and H4. #
PRMT6
(details)
18241 protein arginine methyltransferase 6 55170 Q96LA8 ANM6_HUMAN Methyltransf_25 PF13649 85-182, domain PF22528 188-362 Prmt6 2139971 Q6NZB1 ANM6_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 18079182 # histone H2AR3, H3R2, H4R4 H2AR3me, H4R3me, H3R2me2a 18079182 PRMT6 methylates histone H3 at R2 and histones H4/H2A at R3 in vitro. Overexpression and knockdown analysis identify PRMT6 as the major H3 R2 methyltransferase in vivo. #
PRMT7
(details)
25557 protein arginine methyltransferase 7 54496 Q9NVM4 ANM7_HUMAN PrmA PF06325 64-124, domain PF22528 177-348 515-686 Prmt7 2384879 Q922X9 ANM7_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 15494416 # histone H2A, H4R3 H2A, H4R3me2 15494416 PRMT7 contains methyltransferase activity, the methylated (labeled) histones are H2A and H4. #
PRMT8
(details)
5188 protein arginine methyltransferase 8 56341 Q9NR22 ANM8_HUMAN PrmA PF06325 111-184, domain PF22528 217-380 Prmt8 3043083 Q6PAK3 ANM8_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 16051612 # histone H4R H4Rme 16051612 PRMT8 preferentially methylates histone H4 and the recombinant forms of GAR and Npl3, thus displaying PRMT1-like substrate specificity. #
PRMT9
(details)
25099 protein arginine methyltransferase 9 90826 Q6P2P2 ANM9_HUMAN PrmA PF06325 175-235, domain PF22528 366-461 750-837 Prmt10 2142651 Q3U3W5 ANM9_MOUSE PRMT Protein arginine methyltransferases Histone modification write Histone methylation 18007657 # histone H4R3 H4R3me2 18007657 Arabidopsis thaliana protein arginine methyltransferase 10 (AtPRMT10)--the Arabidopsis homologue of PHRMT10 (=PRMT9)--has been shown to be a type I PRMT, which preferentially asymmetrically methylated histone H4R3 in vitro. Belongs to SAM-binding ethyltransferase superfamily. #
PRPF31
(details)
15446 pre-mRNA processing factor 31 26121 Q8WWY3 PRP31_HUMAN Nop PF01798 100-332, Prp31_C PF09785 341-465 Prpf31 1916238 Q8CCF0 PRP31_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation # CHD8, MLL2/3, MLL4/WBP7 histone # # # Added because it is a complex partner #
PRR14
(details)
28458 proline rich 14 78994 Q9BWN1 PRR14_HUMAN Tantalus PF15386 463-519 Prr14 2384565 Q7TPN9 PRR14_MOUSE # # Histone modification write Histone phosphorylation 24209742 # histone H3K9me2, H3K9me3 # # Binds to H3K9me2/3 through interaction with HP1, and not by direct interaction. PRR14 is incorporated rapidly into chromatin through HP1 binding, tethering heterochromatin to nuclear lamina. #
PSIP1
(details)
9527 PC4 and SFRS1 interacting protein 1 11168 O75475 PSIP1_HUMAN PWWP PF00855 8-88, LEDGF PF11467 350-446 Psip1 2142116 Q99JF8 PSIP1_MOUSE # # Chromatin remodeling # 217205545 # chromatin # # 217205545 The PWWP domain in PSIP1 displays affinity for DNA and chromatin and its chromatin binding ability is crucial for the HIV-1 integration. PSIP1 has been found to promote association of the MLL complex with transcriptionally active chromatin through its PWWP domain. #
PTBP1
(details)
9583 Polypyrimidine tract-binding protein 1 (PTB) (57 kDa RNA-binding protein PPTB-1) (Heterogeneous nuclear ribonucleoprotein I) (hnRNP I) 5725 P26599 PTBP1_HUMAN RRM_5 PF13893 59-144 340-460, RRM_8 PF11835 178-258, RRM_1 PF00076 484-544 Ptbp1 97791 P17225 PTBP1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 21518792, 16260624 # RNA mRNA # 21518792, 16260624 Regulates exon selection in alpha-tropomyosin mRNA New
PTBP1
(details)
9583 Polypyrimidine tract-binding protein 1 (PTB) (57 kDa RNA-binding protein PPTB-1) (Heterogeneous nuclear ribonucleoprotein I) (hnRNP I) 5725 P26599 PTBP1_HUMAN RRM_5 PF13893 59-144 340-460, RRM_8 PF11835 178-258, RRM_1 PF00076 484-544 Ptbp1 97791 P17225 PTBP1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 16260624, 21518792 # RNA mRNA # 16260624, 21518792 Modulates alternative 5'-splice site and muscle-cell specific exon selection. New
PUF60
(details)
17042 Poly(U)-binding-splicing factor PUF60 (60 kDa poly(U)-binding-splicing factor) (FUSE-binding protein-interacting repressor) (FBP-interacting repressor) (Ro-binding protein 1) (RoBP1) (Siah-binding protein 1) (Siah-BP1) 22827 Q9UHX1 PUF60_HUMAN RRM_1 PF00076 131-201 228-297 Puf60 1915209 Q3UEB3 PUF60_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 17579712, 16452196 # RNA mRNA # 17579712, 16452196 Regulates alternative splcing of FIR New
RAD51
(details)
9817 RAD51 recombinase 5888 Q06609 RAD51_HUMAN HHH_5 PF14520 32-79, Rad51 PF08423 95-336 Rad51 97890 Q08297 RAD51_MOUSE # # Histone modification erase Histone ubiquitination 15665856 BRCC # histone # 15665856 # #
RAD54B
(details)
17228 RAD54 homolog B (S. cerevisiae) 25788 Q9Y620 RA54B_HUMAN SNF2-rel_dom PF00176 299-595, Helicase_C PF00271 643-758 Rad54b 3605986 Q6PFE3 RA54B_MOUSE # # Chromatin remodeling # 21357745 # chromatin # # 21357745 Rad54’s ATPase =RAD54B affects the chromatin association of the protein and Rad54 ATPase activity specifically influences its dissociation from foci. #
RAD54L
(details)
9826 RAD54-like (S. cerevisiae) 8438 Q92698 RAD54_HUMAN SNF2-rel_dom PF00176 156-462, Helicase_C PF00271 499-611 Rad54l 894697 P70270 RAD54_MOUSE # # Chromatin remodeling # 8805304 # chromatin # # 8805304 V(D)J recombination does not involve homologous recombination, but mHR54 =RAD54L could mediate a substrate preparation step that V(D)J and meiotic recombination have in common, such as changing the chromatin structure of the loci that will be rearranged. #
RAD54L2
(details)
29123 RAD54-like 2 (S. cerevisiae) 23132 Q9Y4B4 ARIP4_HUMAN SNF2-rel_dom PF00176 274-598, Helicase_C PF00271 725-854 Rad54l2 1933196 Q99NG0 ARIP4_MOUSE # # Chromatin remodeling # 19692572 # chromatin # # 19692572 ARIP4 =RAD54L2 contains SNF2 domain that functions as a motor protein in chromatin remodeling complexes. #
RAG1
(details)
9831 recombination activating gene 1 5896 P15918 RAG1_HUMAN RAG1_imp_bd PF12560 1-291, zf-C3HC4 PF00097 293-331, zf-RAG1 PF10426 354-383, RAG1 PF12940 387-1022 Rag1 97848 P15919 RAG1_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 21256161 # histone, DNA H3.3K, DNA motif H3.3Kub 21256161 It has been suggested that RAG1 targets H3.3, the H3 variant known to be associated with recombining loci, and thus most likely to be encountered by RAG1 during V(D)J recombination. This reaction is absolutely dependent on an intact RAG1 RING domain, and requires regions of the far N-terminus of RAG1 where the H3.3 binding sight is likely to reside and regions within the H3 amino-terminal tail. Several H3.3 lysines are subject to ubiquitylation. #
RAG2
(details)
9832 recombination activating gene 2 5897 P55895 RAG2_HUMAN RAG2 PF03089 52-390, RAG2_PHD PF13341 414-490 Rag2 97849 P21784 RAG2_MOUSE # # Histone modification read # 21423274 # histone H3K4me3 # 21423274 Recombination-activating protein, RAG2, binds to H3K4me3 at transcribed genes while RAG1 recognizes the recombination signal sequence. #
RAI1
(details)
9834 retinoic acid induced 1 10743 Q7Z5J4 RAI1_HUMAN zf-HC5HC2H PF13771 1825-1903 Rai1 103291 Q61818 RAI1_MOUSE # # Chromatin remodeling # 22498752 # chromatin # # # RAI1 regulates transcription through chromatin remodeling, according to UniProt. #
RARA
(details)
9864 retinoic acid receptor, alpha 5914 P10276 RARA_HUMAN zf-C4 PF00105 87-155, Hormone_recep PF00104 227-399 Rara 97856 P11416 RARA_MOUSE NR Nuclear hormone receptors Histone modification write cofactor, TF Histone methylation, TF activator, TF repressor 19377461 # histone H3K4 H3K4me, H3K4me2 19377461 MLL5 is biochemically identified in a GlcNAcylation-dependent multi-subunit complex associating with nuclear retinoic acid receptor RARalpha (also known as RARA), serving as a mono- and di-methyl transferase to H3K4. #
RB1
(details)
9884 retinoblastoma 1 5925 P06400 RB_HUMAN DUF3452 PF11934 110-229, RB_A PF01858 375-573, RB_B PF01857 647-765, Rb_C PF08934 768-925 Rb1 97874 P13405 RB_MOUSE ENDOLIG Endogenous ligands Chromatin remodeling, Histone modification write Histone ubiquitination 19149898 CREST-BRG1, L3MBTL1 histone # # 19149898 Hypophosphorylated pRb can repress gene transcription at least partly by remodeling chromatin structure through its interactions with proteins such as HDAC1, BRM and BRG1. #
RBBP4
(details)
9887 retinoblastoma binding protein 4 5928 Q09028 RBBP4_HUMAN CAF1C_H4-bd PF12265 19-88, WD40 PF00400 173-206 221-256 265-302 309-346 367-402 Rbbp4 1194912 Q60972 RBBP4_MOUSE WDR WD repeat domain containing Histone chaperone # 8858152 NuRF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, NuRD, mSin3A, core HDAC, mSin3A-like complex, PRC2, CAF-1 histone H4 # 8858152 RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. Human p48 =RBBP4 can bind to histone H4 in the absence of CAF-1 p150 and p60. p48, also a known subunit of a histone deacetylase, copurifies with a chromatin assembly complex (CAC), which contains the three subunits of CAF-1 (p150, p60, p48) and H3 and H4, and promotes DNA replication-dependent chromatin assembly. #
RBBP5
(details)
9888 retinoblastoma binding protein 5 5929 Q15291 RBBP5_HUMAN WD40 PF00400 29-52 62-94 Rbbp5 1918367 Q8BX09 RBBP5_MOUSE WDR WD repeat domain containing Histone modification write cofactor Histone methylation 19556245 COMPASS, Menin-associated_HMT, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7, COMPASS-like MLL3,4 histone H3K4 H3K4me1, H3K4me2, H3K4me3 19556245 A five-component 200-kDa MLL1 core complex containing human MLL1, WDR5, RbBP5, Ash2L, and DPY-30. #
RBBP7
(details)
9890 retinoblastoma binding protein 7 5931 Q16576 RBBP7_HUMAN CAF1C_H4-bd PF12265 18-87, WD40 PF00400 172-205 220-255 264-301 308-345 366-402 Rbbp7 1194910 Q60973 RBBP7_MOUSE WDR WD repeat domain containing Histone chaperone # 18571423 NuRF, NuRD, mSin3A, core HDAC, mSin3A-like complex, PRC2 histone H4 # 18571423 RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. When a histone H3/H4 dimer (or tetramer) binds to RbAp46 or RbAp48, helix 1 of histone H4 unfolds to interact with the histone chaperone. #
RBFOX1
(details)
9910 RNA-binding motif protein, X chromosome (Glycoprotein p43) (Heterogeneous nuclear ribonucleoprotein G) (hnRNP G) [Cleaved into: RNA-binding motif protein, X chromosome, N-terminally processed] 27316 P38159 RBMX_HUMAN RRM_1 PF00076 10-80, RBM1CTR PF08081 169-221 Rbmx 1343044 Q9WV02 RBMX_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 12165565 # RNA mRNA # 12165565 Promotes exon 7 inclusion of SMN New
RBM11
(details)
9897 Splicing regulator RBM11 (RNA-binding motif protein 11) 54033 P57052 RBM11_HUMAN RRM_1 PF00076 12-80 Rbm11 2447622 Q80YT9 RBM11_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 21984414 # RNA mRNA # 21984414 Regulates alternative splicing of Bcl-X and potentialy another genes during neuron and germ cell differentiation. New
RBM15
(details)
14959 RNA-binding protein 15 (One-twenty two protein 1) (RNA-binding motif protein 15) 64783 Q96T37 RBM15_HUMAN RRM_1 PF00076 182-245 376-444, SPOC PF07744 783-956 Rbm15 2443205 Q0VBL3 RBM15_MOUSE RBM RNA binding motif containing RNA modification RNA methylation 27602518 WMM RNA A of mRNA m6A 27602518 Recognition of RNA sites for m6A-methylation and recruitment of methylation complexes New
RBM15B
(details)
24303 Putative RNA-binding protein 15B (One-twenty two protein 3) (HsOTT3) (HuOTT3) (RNA-binding motif protein 15B) 29890 Q8NDT2 RB15B_HUMAN RRM_1 PF00076 339-408 420-480, SPOC PF07744 705-888 Rbm15B 1923598 Q6PHZ5 RB15B_MOUSE RBM RNA binding motif containing RNA modification RNA methylation 27602518 WMM RNA A of mRNA m6A 27602518 Recognition of RNA sites for m6A-methylation and recruitment of methylation complexes New
RBM17
(details)
16944 Splicing factor 45 (45 kDa-splicing factor) (RNA-binding motif protein 17) 84991 Q96I25 SPF45_HUMAN G-patch PF01585 236-276, RRM_1 PF00076 328-383 Rbm17 1924188 Q8JZX4 SPF45_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 17589525 # RNA mRNA # 17589525 Regulates alternative splicing of apoptosis regulator FAS New
RBM24
(details)
21539 RNA-binding protein 24 (RNA-binding motif protein 24) (RNA-binding region-containing protein 6) 221662 Q9BX46 RBM24_HUMAN RRM_1 PF00076 13-70 Rbm24 3610364 D3Z4I3 RBM24_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 29104163, 26990106 # RNA mRNA # 29104163, 26990106 Promotes alternative splicing events of several pluripotency and/or differentiation genes. Mediates preferentially muscle-specific exon inclusion in numerous mRNAs important for striated cardiac and skeletal muscle cell differentiation New
RBM25
(details)
23244 RNA-binding protein 25 (Arg/Glu/Asp-rich protein of 120 kDa) (RED120) (Protein S164) (RNA-binding motif protein 25) (RNA-binding region-containing protein 7) 58517 P49756 RBM25_HUMAN RRM_1 PF00076 89-157, PWI PF01480 770-835 Rbm25 1914289 B2RY56 RBM25_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 18663000 # RNA RNA # 18663000 alternative splicing site selection New
RBM4
(details)
9901 RNA-binding protein 4 (Lark homolog) (hLark) (RNA-binding motif protein 4) (RNA-binding motif protein 4a) 5936 Q9BWF3 RBM4_HUMAN RRM_1 PF00076 4-65 80-142, zf-CCHC PF00098 161-176 Rbm4 1100865 Q8C7Q4 RBM4_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 16777844, 21518792 # RNA RNA # 16777844, 21518792 Modulates alternative 5'-splice site and exon selection. Activates exon skipping of the PTB pre-mRNA during muscle cell differentiation New
RBM5
(details)
9902 RNA-binding protein 5 (Protein G15) (Putative tumor suppressor LUCA15) (RNA-binding motif protein 5) (Renal carcinoma antigen NY-REN-9) 10181 P52756 RBM5_HUMAN RRM_1 PF00076 100-163 233-295, zf-RanBP PF00641 181-209, OCRE PF17780 456-507, G-patch PF01585 743-787 Rbm5 1933204 Q91YE7 RBM5_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 18840686 # RNA mRNA # 18840686 Regulates the ratio of proapoptotic/antiapoptotic casp-2 splicing isoforms New
RBM7
(details)
9904 RNA-binding protein 7 (RNA-binding motif protein 7) 10179 Q9Y580 RBM7_HUMAN RRM_1 PF00076 12-81 Rbm7 1914260 Q9CQT2 RBM7_MOUSE RBM RNA binding motif containing RNA modification RNA degradation, alternative splicing 25578728 # RNA snRNA # 25578728 Component of exosome New
RBM8A
(details)
9905 RNA-binding protein 8A (Binder of OVCA1-1) (BOV-1) (RNA-binding motif protein 8A) (RNA-binding protein Y14) (Ribonucleoprotein RBM8A) 9939 Q9Y5S9 RBM8A_HUMAN RRM_1 PF00076 75-144 Rbm8A 1913129 Q9CWZ3 RBM8A_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 22203037 # RNA mRNA # 22203037 Production of the proapoptotic Bcl-x(S) splice variant. New
RBMY1A1
(details)
9912 RNA-binding motif protein, Y chromosome, family 1 member A1 (RNA-binding motif protein 1) (RNA-binding motif protein 2) (Y chromosome RNA recognition motif 1) (hRBMY) 5940 P0DJD3 RBY1A_HUMAN RRM_1 PF00076 10-79 Rbmy 104732 O35698 RBY1A_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 12165565 # RNA mRNA # 12165565 Regulates alternative splicing of SMN gene New
RBX1
(details)
9928 ring-box 1, E3 ubiquitin protein ligase 9978 P62877 RBX1_HUMAN zf-rbx1 PF12678 40-98 Rbx1 1891829 P62878 RBX1_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write cofactor Histone ubiquitination 18593899 # histone H3, H4 H3ub, H4ub 18593899 Histones H3 and H4 are targets of the CUL4-DDB-RBX1 E3 ligase ( 34). It has been proposed that both DDB1-CUL4DDB2 and Ring2 ligases are recruited to UV-induced lesions to modify histones. #
RCC1
(details)
1913 regulator of chromosome condensation 1 1104 P18754 RCC1_HUMAN RCC1 PF00415 35-82 86-134 138-187 191-257 259-309 313-358 364-414 Rcc1 1913989 Q8VE37 RCC1_MOUSE # # Chromatin remodeling # 11375490 # histone H2A, H2B # # Binds to histones H2A and H2B. #
RCOR1
(details)
17441 REST corepressor 1 23186 Q9UKL0 RCOR1_HUMAN ELM2 PF01448 107-158, Myb_DNA-binding PF00249 194-237 385-428, REST_helical PF20878 311-375 Rcor1 106340 Q8CFE3 RCOR1_MOUSE # # Histone modification erase cofactor, Histone modification erase cofactor Histone acetylation, Histone methylation 10449787 BHC, SCL, LSD-CoREST histone # # 10449787 CoREST=RCOR1 may function as a repressor by recruiting, either directly or indirectly, histone deacetylase activity. #
RCOR3
(details)
25594 REST corepressor 3 55758 Q9P2K3 RCOR3_HUMAN ELM2 PF01448 1-52, Myb_DNA-binding PF00249 88-131 289-332, REST_helical PF20878 215-278 Rcor3 2441920 Q6PGA0 RCOR3_MOUSE # # Histone modification erase cofactor Histone acetylation 23752268 LSD-CoREST histone # # 23752268 Part of the HDAC interactome. #
REST
(details)
9966 RE1-silencing transcription factor 5978 Q13127 REST_HUMAN zf-C2H2 PF00096 304-326 Rest 104897 Q8VIG1 REST_MOUSE # # Histone modification erase cofactor, TF Histone acetylation, TF activator, TF repressor 12399542 # DNA DNA motif # 12399542 REST/NRSF can mediate repression, in part, through the association of its NH2-terminal repression domain with the mSin3/histone deacethylase 1,2 (HDAC1,2) complex. #
RFOX1
(details)
18222 RNA binding protein fox-1 homolog 1 (Ataxin-2-binding protein 1) (Fox-1 homolog A) (Hexaribonucleotide-binding protein 1) 54715 Q9NWB1 RFOX1_HUMAN RRM_1 PF00076 120-186, Fox-1_C PF12414 254-342 Rbfox1 1926224 Q9JJ43 RFOX1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 16537540 # RNA mRNA # 16537540 Activates inclusion of 4.1R exon 16 New
RING1
(details)
10018 ring finger protein 1 6015 Q06587 RING1_HUMAN zf-C3HC4_2 PF13923 47-87, RAWUL PF16207 282-400 Ring1 1101770 O35730 RING1_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write, Polycomb group (PcG) protein Histone ubiquitination 15386022 PRC1, BCOR, RING2-L3MBTL2, RING2-FBRS histone H2AK119 H2AK119ub 15386022 The complex hPRC1L (human Polycomb repressive complex 1-like) is composed of several Polycomb-group proteins including Ring1, Ring2, Bmi1 and HPH2. hPRC1L monoubiquitinates nucleosomal histone H2A at lysine 119. #
RLIM
(details)
13429 ring finger protein, LIM domain interacting 51132 Q9NVW2 RNF12_HUMAN zf-RING_2 PF13639 569-611 Rlim 1342291 Q9WTV7 RNF12_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification erase cofactor Histone acetylation 10431247 # histone # # # Recruits the Sin3A/histone deacetylase corepressor complex. #
RMI1
(details)
25764 RecQ mediated genome instability 1 80010 Q9H9A7 RMI1_HUMAN RMI1_N_N PF21000 16-62, RMI1_N_C PF08585 67-206, RMI1_C PF16099 481-623 Rmi1 1921636 Q9D4G9 RMI1_MOUSE # # DNA modification # 16537486 # DNA # # 16537486 # #
RNF168
(details)
26661 ring finger protein 168, E3 ubiquitin protein ligase 165918 Q8IYW5 RN168_HUMAN zf-C3HC4 PF00097 16-55 Rnf168 1917488 Q80XJ2 RN168_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 22980979 # histone H2AK13, H2AK15, H2AXK13, H2AXK15 H2AK13ub, H2AK15ub, H2AXK13ub, H2AXK15ub 22980979 RNF8 and RNF168 targets histone H2A and H2AX. RNF8 is the first ligase recruited to the damage site, and RNF168 follows RNF8-dependent ubiquitination. This suggests that RNF8 initiates H2A/H2AX ubiquitination with K63-linked ubiquitin chains and RNF168 extends them. RNF8 is inactive toward nucleosomal H2A, whereas RNF168 catalyzes the monoubiquitination of the histones specifically on K13-15. #
RNF2
(details)
10061 ring finger protein 2 6045 Q99496 RING2_HUMAN zf-C3HC4_2 PF13923 50-90, RAWUL PF16207 246-330 Rnf2 1101759 Q9CQJ4 RING2_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 16943429 PRC1, BCOR, RING2-L3MBTL2, RING2-FBRS, CHD8, MLL2/3, MLL4/WBP7 histone H2AK119 H2AK119ub 16943429 RNF2 is the only BCOR complex PcG protein with a known enzymatic activity: an E3 ligase for the histone protein H2A (12, 78). Ub-H2A is thought to be involved in maintaining a repressed chromatin state. #
RNF20
(details)
10062 ring finger protein 20, E3 ubiquitin protein ligase 56254 Q5VTR2 BRE1A_HUMAN zf-C3HC4 PF00097 922-960 Rnf20 1925927 Q5DTM8 BRE1A_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 16307923 # histone H2BK120 H2BK120ub1 16307923 Two copies each of the E3 ligases RNF20 and RNF40 are present in the same complex catalyzing histone H2B-K120 monoubiquitination. The complex that catalyzes histone H2A-K119 monoubiquitination also contains two E3 ligases, Ring1 and Ring2. #
RNF40
(details)
16867 ring finger protein 40, E3 ubiquitin protein ligase 9810 O75150 BRE1B_HUMAN zf-C3HC4 PF00097 948-986 Rnf40 2142048 Q3U319 BRE1B_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write cofactor Histone ubiquitination 16307923 # histone H2BK121 H2BK120ub2 16307923 Two copies each of the E3 ligases RNF20 and RNF40 are present in the same complex catalyzing histone H2B-K120 monoubiquitination. The complex that catalyzes histone H2A-K119 monoubiquitination also contains two E3 ligases, Ring1 and Ring2. #
RNF8
(details)
10071 ring finger protein 8, E3 ubiquitin protein ligase 9025 O76064 RNF8_HUMAN FHA PF00498 38-109, zf-C3HC4_3 PF13920 400-446 Rnf8 1929069 Q8VC56 RNF8_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write Histone ubiquitination 22980979 # histone H2AK63, H2AXK63, H2AK48, H2AXK48 H2AK63ub, H2AXK63ub, H2AK48ub, H2AXK48ub 22980979 Ubiquitin-dependent signaling during the DNA damage response (DDR) to double-strand breaks (DSBs) is initiated by two E3 ligases, RNF8 and RNF168, targeting histone H2A and H2AX. RNF8 is the first ligase recruited to the damage site, and RNF168 follows RNF8-dependent ubiquitination. This suggests that RNF8 initiates H2A/H2AX ubiquitination with K63-linked ubiquitin chains and RNF168 extends them. #
RNPS1
(details)
10080 RNA-binding protein with serine-rich domain 1 (SR-related protein LDC2) 10921 Q15287 RNPS1_HUMAN RRM_1 PF00076 164-233 Rnps1 97960 Q99M28 RNPS1_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 22203037 # RNA mRNA # 22203037 Production of the proapoptotic Bcl-x(S) splice variant. New
RPS6KA3
(details)
10432 ribosomal protein S6 kinase, 90kDa, polypeptide 3 6197 P51812 KS6A3_HUMAN Pkinase PF00069 68-327 422-679, Pkinase_C PF00433 351-387 Rps6ka3 104557 P18654 KS6A3_MOUSE # # Histone modification write cofactor Histone phosphorylation 10436156 # histone H3S10 H3S10ph 10436156 Is required for EGF-stimulated phosphorylation of CREB1 and histone H3 at 'Ser-10', which results in the subsequent transcriptional activation of several immediate-early genes. #
RPS6KA4
(details)
10433 ribosomal protein S6 kinase, 90kDa, polypeptide 4 8986 O75676 KS6A4_HUMAN Pkinase PF00069 33-301 413-673, Pkinase_C PF00433 322-361 Rps6ka4 1930076 Q9Z2B9 KS6A4_MOUSE # # Histone modification write Histone phosphorylation 12773393 # histone H3S10, H3S28 H3S10ph, H3S28ph 12773393 The MSKs, particularly MSK2=RPS6KA4, but not RSK2, are the major histone H3 and HMG-14 kinases. #
RPS6KA5
(details)
10434 ribosomal protein S6 kinase, 90kDa, polypeptide 5 9252 O75582 KS6A5_HUMAN Pkinase PF00069 49-318 426-687, Pkinase_C PF00433 339-377 Rps6ka5 1920336 Q8C050 KS6A5_MOUSE # # Histone modification write Histone phosphorylation 12773393 # histone H2AS1, H3S10, H3S28 H2AS1ph, H3S10ph, H3S28ph 12773393 The MSKs=(RPS6KA4, RPS6KA5), particularly MSK2, but not RSK2, are the major histone H3 and HMG-14 kinases. #
RPUSD3
(details)
28437 Mitochondrial mRNA pseudouridine synthase RPUSD3 (EC 5.4.99.-) (RNA pseudouridylate synthase domain-containing protein 3) 285367 Q6P087 RUSD3_HUMAN PseudoU_synth_2 PF00849 90-252 Rpusd3 2141440 Q14AI6 RUSD3_MOUSE RPUSD RNA pseudouridylate synthase domain containing RNA modification RNA pseudouridinilation 27974379 # RNA mt--mRNA U 27974379 Pseudouridinilation of mitochondrial mRNA New
RRP8
(details)
29030 ribosomal RNA processing 8, methyltransferase, homolog (yeast) 23378 O43159 RRP8_HUMAN Methyltransf_8 PF05148 239-456 Rrp8 1914251 Q9DB85 RRP8_MOUSE # # Histone modification cofactor # 18485871 eNoSc histone H3ac H3K9me2 # A component of the eNoSC complex, that mediates silencing of rDNA by recruiting histone-modifying enzymes, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. #
RSF1
(details)
18118 remodeling and spacing factor 1 51773 Q96T23 RSF1_HUMAN WHIM1 PF15612 96-141, PHD PF00628 894-938 Rsf1 2682305 # # PHF Zinc fingers, PHD-type Histone modification read # 12972596 RSF histone # # 12972596 Recombinant RSF complex coimmunoprecipitates with core histones, and Rsf-1 alone also interacts with core histones. #
RSRC1
(details)
24152 Serine/Arginine-related protein 53 (SRrp53) (Arginine/serine-rich coiled-coil protein 1) 51319 Q96IZ7 RSRC1_HUMAN Rsrc1 1914130 Q9DBU6 RSRC1_MOUSE # # RNA modification Alternative splicing 29522154 # RNA mRNA # 29522154 Regulates alternative splicing of E1A New
RUVBL1
(details)
10474 RuvB-like AAA ATPase 1 8607 Q9Y265 RUVB1_HUMAN TIP49 PF06068 14-368, TIP49_C PF17856 374-439 Ruvbl1 1928760 P60122 RUVB1_MOUSE INO80, AATP INO80 complex subunits, ATPases / AAA-type Chromatin remodeling, Histone modification write Histone phosphorylation 14695187 Ino80, SWR, NuA4, NuA4-related complex, CHD8, MLL2/3, MLL4/WBP7, SRCAP chromatin # # 14695187 The ability of TIP49=RUVBL1 to inhibit ITF-2 gene expression has been linked to decreased acetylation of histones in the vicinity of the TCF-binding sites in the ITF-2 promoter region. It has been suggested that TIP49 is an important cofactor in beta-catenin/TCF gene regulation in normal and neoplastic cells, likely functioning in chromatin remodeling. #
RUVBL2
(details)
10475 RuvB-like AAA ATPase 2 10856 Q9Y230 RUVB2_HUMAN TIP49 PF06068 21-364, TIP49_C PF17856 370-435 Ruvbl2 1342299 Q9WTM5 RUVB2_MOUSE INO80, AATP INO80 complex subunits, ATPases / AAA-type Chromatin remodeling cofactor # 18026119 Ino80, SWR, NuA4, NuA4-related complex, CHD8, MLL2/3, MLL4/WBP7, SRCAP chromatin # # 18026119 The seven human INO80 complex components include TIP49A and TIP49B (previously identified as ‘RuvB-like’ proteins, and labeled RUVBL1 and RUVBL2). #
RYBP
(details)
10480 RING1 and YY1 binding protein 23429 Q8N488 RYBP_HUMAN zf-RanBP PF00641 22-45, YAF2_RYBP PF17219 146-178 Rybp 1929059 Q8CCI5 RYBP_MOUSE # # Polycomb group (PcG) protein # 19098711 BCOR, RING2-L3MBTL2, RING2-FBRS # # # 19098711 RYBP (RING1- and YY1-binding protein), a member of the polycomb group (PcG), interacts with MDM2 and decreases MDM2-mediated p53 ubiquitination, leading to stabilization of p53 and an increase in p53 activity. #
SAFB
(details)
10520 scaffold attachment factor B 6294 Q15424 SAFB1_HUMAN SAP PF02037 31-65, RRM_1 PF00076 408-478 Safb 2146974 D3YXK2 SAFB1_MOUSE RBM RNA binding motif (RRM) containing Chromatin remodeling # 24055346 # chromatin # # # The chromatine scaffold protein, a component of the DNA damage response cooperating with histone acetylation to allow for efficient γH2AX spreading. #
SAP130
(details)
29813 Sin3A-associated protein, 130kDa 79595 Q9H0E3 SP130_HUMAN SAP130_C PF16014 654-1033 Sap130 1919782 Q8BIH0 SP130_MOUSE # # Histone modification erase cofactor Histone acetylation 12724404 # histone # # 12724404 SAP130 has a repression domain at its C terminus that interacts with the mSin3A-HDAC complex and an N-terminal domain that probably mediates an interaction with a transcriptional activator. #
SAP18
(details)
10530 Sin3A-associated protein, 18kDa 10284 O00422 SAP18_HUMAN SAP18 PF06487 21-137 Sap18 1277978 O55128 SAP18_MOUSE # # Histone modification erase cofactor Histone acetylation 9150135 mSin3A histone # # 9150135 SAP18 Interacts with mSin3 and enhances the ability of mSin3-mediated repression of transcription. #
SAP25
(details)
41908 Sin3A-associated protein, 25kDa 100316904 Q8TEE9 SAP25_HUMAN SAP25 PF15476 17-193 Sap25 3802945 Q1EHW4 SAP25_MOUSE # # Histone modification erase cofactor Histone acetylation 16449650 # histone # # 16449650 SAP25 binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. SAP25 is required for mSin3A-mediated, but not N-CoR-mediated, repression. #
SAP30
(details)
10532 Sin3A-associated protein, 30kDa 8819 O75446 SAP30_HUMAN zf-SAP30 PF13866 64-134, SAP30_Sin3_bdg PF13867 153-205 Sap30 1929129 O88574 SAP30_MOUSE # # Histone modification erase cofactor Histone acetylation 9651585 mSin3A, mSin3A-like complex histone # # 9651585 The human SAP30 complex is active in deacetylating core histone octamers. #
SAP30L
(details)
25663 SAP30-like 79685 Q9HAJ7 SP30L_HUMAN zf-SAP30 PF13866 26-95, SAP30_Sin3_bdg PF13867 114-166 Sap30l 1354709 Q5SQF8 SP30L_MOUSE # # Histone modification erase cofactor Histone acetylation 16820529 # histone # # 16820529 SAP30L induces transcriptional repression, possibly via recruitment of Sin3A and histone deacetylases. A functional nucleolar localization signal in SAP30L means that SAP30L and SAP30 are able to target Sin3A to the nucleolus. #
SATB1
(details)
10541 SATB homeobox 1 6304 Q01826 SATB1_HUMAN ULD PF16534 72-169, CUTL PF16557 177-248, CUT PF02376 371-446 493-568, Homeodomain PF00046 646-701 Satb1 105084 Q60611 SATB1_MOUSE CUT Homeoboxes / CUT class Chromatin remodeling cofactor # 15713622, 24055346, 12374985, 12374985, 24055346 # chromatin # # # Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. Forms chromatin loops. SATB1 also targets ACF1 and ISWI, subunits of CHRAC and ACF nucleosome mobilizing complexes. SAFB1 is a component of the DNA damage response and shows that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading. #
SATB2
(details)
21637 SATB homeobox 2 23314 Q9UPW6 SATB2_HUMAN ULD PF16534 58-155, CUTL PF16557 162-234, CUT PF02376 360-435 482-557, Homeodomain PF00046 615-671 Satb2 2679336 Q8VI24 SATB2_MOUSE CUT Homeoboxes / CUT class Chromatin remodeling cofactor # 18255031 # chromatin # # # Cromatin remodeling in mouse. UniProt: Acts as a docking site for several chromatin remodeling enzymes and also by recruiting corepressors (HDACs) or coactivators (HATs) directly to promoters and enhancers. #
SCMH1
(details)
19003 sex comb on midleg homolog 1 (Drosophila) 22955 Q96GD3 SCMH1_HUMAN MBT PF02820 62-129 171-236, RBR PF17208 269-333, SLED PF12140 357-471, SAM_1 PF00536 592-656 Scmh1 1352762 Q8K214 SCMH1_MOUSE SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # 23356856 PRC1 # # # 23356856 SCMH1 is part of a polycomb group complex 1 (PcG1) involved in transcriptional silencing and proteosomal degradation for the Geminin protein, important for regulation of replication and maintenance of undifferentiated states. #
SCML2
(details)
10581 sex comb on midleg-like 2 (Drosophila) 10389 Q9UQR0 SCML2_HUMAN MBT PF02820 67-134 176-241, RBR PF17208 281-321, SLED PF12140 355-464, SAM_1 PF00536 628-695 # # # # SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # 24727478 PRC1 # # # 24727478 Scml2 is a member of the Polycomb group of proteins involved in epigenetic gene silencing. Human Scml2 is a part of a multisubunit protein complex, PRC1 (Polycomb repressive complex 1), which is responsible for maintenance of gene repression, prevention of chromatin remodeling, preservation of the "stemness" of the cell, and cell differentiation. #
SCML4
(details)
21397 sex comb on midleg-like 4 (Drosophila) 256380 Q8N228 SCML4_HUMAN RBR PF17208 1-61, SLED PF12140 96-207, SAM_1 PF00536 343-410 Scml4 2446140 Q80VG1 SCML4_MOUSE SAMD Sterile alpha motif (SAM) domain containing Polycomb group (PcG) protein # # # # # # # Putative Polycomb group (PcG) protein. PcG proteins act by forming multiprotein complexes, which are required to maintain the transcriptionally repressive state of homeotic genes throughout development. (Annotated by similarity.) #
SENP1
(details)
17927 SUMO1/sentrin specific peptidase 1 29843 Q9P0U3 SENP1_HUMAN Peptidase_C48 PF02902 464-638 Senp1 2445054 P59110 SENP1_MOUSE # # Histone modification erase cofactor Histone sumoylation 15199155 # histone H4 # 15199155 SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. #
SENP3
(details)
17862 SUMO1/sentrin/SMT3 specific peptidase 3 26168 Q9H4L4 SENP3_HUMAN SENP3_5_N PF19722 306-387, Peptidase_C48 PF02902 400-570 Senp3 2158736 Q9EP97 SENP3_MOUSE # # Histone modification erase, Histone modification write cofactor Histone sumoylation, Histone acetylation # CHD8, MLL2/3, MLL4/WBP7 histone H3 H3ac 18850004 Facultative member of the MLL1/MLL complex (UniProt). #
SET
(details)
10760 SET nuclear proto-oncogene 6418 Q01105 SET_HUMAN NAP PF00956 92-234 Set 1860267 Q9EQU5 SET_MOUSE # # Histone modification # 17320507 # histone # # # Classified as histone-modifying enzymes in paper. #
SETD1A
(details)
29010 SET domain containing 1A 9739 O15047 SET1A_HUMAN RRM_1 PF00076 97-166, N-SET PF11764 1419-1559, SET PF00856 1580-1685 Setd1a 2446244 # # KMT, RBM Chromatin-modifying enzymes / K-methyltransferases, RNA binding motif (RRM) containing Histone modification write Histone methylation 17355966 COMPASS histone H3K4 H3K4me 17355966 The CFP1 complex contains human homologues of the COMPASS complex, including Set1A=SETD1A, Wdr5, Ash2, Rbbp5, and Wdr82 (previously denoted hSwd2). The human Set1A-CFP1 complex exhibits histone H3-Lys4 methyltransferase activity in vitro. #
SETD1B
(details)
29187 SET domain containing 1B 23067 Q9UPS6 SET1B_HUMAN RRM_1 PF00076 104-175, N-SET PF11764 1676-1821, SET PF00856 1839-1944 Setd1b 2652820 Q8CFT2 SET1B_MOUSE KMT, RBM Chromatin-modifying enzymes / K-methyltransferases, RNA binding motif (RRM) containing Histone modification write Histone methylation 17355966 COMPASS histone H3K4 H3K4me 17355966 The extensive homology between Set1A and Set1B=SETD1B, particularly throughout the SET domain, suggests that Set1B functions as a histone methyltransferase. #
SETD2
(details)
18420 SET domain containing 2 29072 Q9BYW2 SETD2_HUMAN AWS PF17907 1513-1547, SET PF00856 1561-1667, WW PF00397 2391-2421, SRI PF08236 2471-2552 Setd2 1918177 E9Q5F9 SETD2_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 16118227 # histone H3K36me2 H3K36me3 16118227 HYPB HMTase=SETD2 may coordinate histone methylation and transcriptional regulation in mammals. #
SETD3
(details)
20493 SET domain containing 3 84193 Q86TU7 SETD3_HUMAN SET PF00856 105-314, Rubis-subs-bind PF09273 345-475 Setd3 1289184 Q91WC0 SETD3_MOUSE # # Histone modification write Histone methylation # # histone H3K36 H3K36me # Histone methyltransferase that methylates 'Lys-36' of histone H3 (H3K36me). H3 'Lys-36' methylation represents a specific tag for epigenetic transcriptional activation. (Annotated by similarity.) #
SETD5
(details)
25566 SET domain containing 5 55209 Q9C0A6 SETD5_HUMAN SET PF00856 285-389 Setd5 1920145 Q5XJV7 SETD5_MOUSE # # Histone modification write Histone methylation 24680889 # histone # # 24680889 Encoding methyltransferases regulating histone modification. #
SETD6
(details)
26116 SET domain containing 6 79918 Q8TBK2 SETD6_HUMAN SET PF00856 75-286, Rubis-subs-bind PF09273 328-465 Setd6 1913333 Q9CWY3 SETD6_MOUSE # # Chromatin remodeling, Histone modification write Histone methylation 21131967 # histone # # 21131967 SETD6 monomethylation of nuclear RelA at K310 attenuates NF-κB signaling by docking GLP (via its ankyrin repeats) at target genes to generate a silent chromatin state, effectively rendering chromatin-bound RelA inert. As deregulation of NF-κB is linked to pathologic inflammatory processes and cancer8 and SETD6 inhibits NF-κB signaling in diverse cell types, including primary human cells, SETD6 may provide a new link by which protein lysine methylation and chromatin regulation influence tumor suppression and anti-inflammatory respons. #
SETD7
(details)
30412 SET domain containing (lysine methyltransferase) 7 80854 Q8WTS6 SETD7_HUMAN MORN PF02493 19-34 36-58 60-81, domain PF22648 110-184, SET PF00856 227-336 Setd7 1920501 Q8VHL1 SETD7_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 11779497 # histone H3K4 H3K4me1 11779497 SET7 methylates H3-K4 in vitro and in vivo. In addition, methylation of H3-K4 and H3-K9 inhibit each other. Furthermore, H3-K4 and H3-K9 methylation by SET7 and SUV39H1, respectively, have differential effects on subsequent histone acetylation by p300. May explain differential effects of H3-K4 and H3-K9 methylation on transcription. #
SETD8
(details)
29489 SET domain containing (lysine methyltransferase) 8 387893 Q9NQR1 SETD8_HUMAN SET PF00856 268-378 Setd8 1915206 Q2YDW7 SETD8_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 12086618 # histone H4K20 H4K20me1 12086618 The encoding gene PR/SET07 =SETD8 of a human histone H4 lysine 20 methyltransferase. #
SETDB1
(details)
10761 SET domain, bifurcated 1 9869 Q15047 SETB1_HUMAN DUF5604 PF18300 193-250, Tudor_5 PF18359 258-311, Tudor_4 PF18358 348-398, MBD PF01429 596-667, Pre-SET PF05033 683-798, SET PF00856 1199-1266 Setdb1 1934229 O88974 SETB1_MOUSE KMT, TDRD Chromatin-modifying enzymes / K-methyltransferases, Tudor domain containing Histone modification write Histone methylation 11959841 # histone H3K9 H3K9me3 11959841 In vitro methylation of the N-terminal tail of histone H3 by SETDB1 is sufficient to enhance the binding of HP1 proteins, which requires both an intact chromodomain and chromoshadow domain. #
SETDB2
(details)
20263 SET domain, bifurcated 2 83852 Q96T68 SETB2_HUMAN MBD PF01429 163-229, Pre-SET PF05033 247-359, SET PF00856 623-694 Setdb2 2685139 Q8C267 SETB2_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 20404330 # histone H3K9 H3K9me3 20404330 A member of the histone H3K9 methyltransferase family named CLLD8 (or SETDB2 or KMT1F). #
SETMAR
(details)
10762 SET domain and mariner transposase fusion gene 6419 Q53H47 SETMR_HUMAN Pre-SET PF05033 28-132, SET PF00856 148-263, HTH_48 PF17906 346-392, Transposase_1 PF01359 502-581 Setmar 1921979 Q80UJ9 SETMR_MOUSE # # Histone modification write Histone methylation 16332963 # histone H3K4, H3K36 H3K4me, H3K36me 16332963 Metnase =SETMAR that has a SET domain and a transposase/nuclease domain. Metnase methylates histone H3 lysines 4 and 36, which are associated with open chromatin. Metnase increases resistance to ionizing radiation and increases nonhomologous end-joining repair of DNA doublestrand breaks. #
SF3B1
(details)
10768 splicing factor 3b, subunit 1, 155kDa 23451 O75533 SF3B1_HUMAN SF3b1 PF08920 327-453, domain PF22646 1086-1158 Sf3b1 1932339 Q99NB9 SF3B1_MOUSE # # RNA modification # 23568491 B-WICH RNA # # 23568491 Although the causative link between SF3B1 mutation and CLL pathogenesis remains unclear, several lines of evidence suggest SF3B1 mutation might be linked to genomic stability and epigenetic modification. #
SF3B3
(details)
10770 splicing factor 3b, subunit 3, 130kDa 23450 Q15393 SF3B3_HUMAN MMS1_N PF10433 77-591, CPSF_A PF03178 863-1180 Sf3b3 1289341 Q921M3 SF3B3_MOUSE # # RNA modification # 17643112 # RNA # # 17643112 # #
SFMBT1
(details)
20255 Scm-like with four mbt domains 1 51460 Q9UHJ3 SMBT1_HUMAN MBT PF02820 54-121 166-234 279-351 388-454, SLED PF12140 501-616, SAM_1 PF00536 793-857 Sfmbt1 1859609 Q9JMD1 SMBT1_MOUSE # # Polycomb group (PcG) protein # 21423274 SCL histone H4K20 # 21423274 Table 1 in the reference. #
SFMBT2
(details)
20256 Scm-like with four mbt domains 2 57713 Q5VUG0 SMBT2_HUMAN MBT PF02820 78-146 191-258 301-375 411-478, SLED PF12140 529-642, SAM_1 PF00536 823-885 Sfmbt2 2447794 Q5DTW2 SMBT2_MOUSE SAMD Sterile alpha motif (SAM) domain containing Histone modification read, Polycomb group (PcG) protein, TF TF repressor 23385818 # histone, DNA H3K9me2, H3K9me3, H3K27me3, H4K20me2, H4K20me3 H3, H4 23385818 SFMBT2 binds preferentially to methylated histone H3 and H4 that are associated with transcriptional repression. Occupancy of SFMBT2 coincide with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter. #
SFPQ
(details)
10774 splicing factor proline/glutamine-rich 6421 P23246 SFPQ_HUMAN RRM_1 PF00076 299-363 374-432, NOPS PF08075 444-496 Sfpq 1918764 Q8VIJ6 SFPQ_MOUSE RBM RNA binding motif (RRM) containing Chromatin remodeling cofactor, RNA modification, TF TF repressor 22783022, 10858305, 8449401 # DNA, RNA # # 22783022, 10858305, 8449401 Four components of the Sin3a transcriptional repressor complex: SAP130, SUDS3, SFPQ, and TGIF2. Since the RNA splicing factors do not have an endogenous DNA relaxation activity, topoisomerase I (Chromatin remodeller) gets stimulated by the interaction with the PSF= SFPQ/p54nrb heterodimer. PSF=SFPQ is an essential pre-mRNA splicing factor required early in spliceosome formation. #
SFSWAP
(details)
10790 Splicing factor, suppressor of white-apricot homolog (Splicing factor, arginine/serine-rich 8) (Suppressor of white apricot protein homolog) 6433 Q12872 SFSWA_HUMAN DRY_EERY PF09750 34-153, Surp PF01805 210-255 458-502 Sfswap 101760 Q3USH5 SFSWA_MOUSE # # RNA modification Alternative splicing 8940107 # RNA mRNA # 8940107 Regulates its own splicing, and also the splicing of fibronectin and CD45. Represses the splicing of MAPT/Tau exon 10 New
SHPRH
(details)
19336 SNF2 histone linker PHD RING helicase, E3 ubiquitin protein ligase 257218 Q149N8 SHPRH_HUMAN SNF2-rel_dom PF00176 307-985, Linker_histone PF00538 440-512, SHPRH_helical-1st PF21325 1003-1099, SHPRH_helical-2nd PF21324 1135-1361, zf-RING_UBOX PF13445 1432-1478, Helicase_C PF00271 1514-1622 Shprh 1917581 Q7TPQ3 SHPRH_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification write cofactor Histone ubiquitination 17130289 # histone # # 17130289 SHPRH associates with PCNA, RAD18, and the ubiquitin-conjugating enzyme UBC13 (E2) and promotes methyl methanesulfonate (MMS)-induced PCNA polyubiquitination. #
SIN3A
(details)
19353 SIN3 transcription regulator family member A 25942 Q96ST3 SIN3A_HUMAN PAH PF02671 142-186 323-380 478-522, Sin3_corepress PF08295 551-647, Sin3a_C PF16879 885-1192 Sin3a 107157 Q60520 SIN3A_MOUSE # # Histone modification erase cofactor, TF Histone acetylation, TF activator, TF repressor 12670868 SWI/SNF_Brg1(I), SWI/SNF_Brm, mSin3A, mSin3A-like complex histone, DNA DNA motif # 12670868 Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. #
SIN3B
(details)
19354 SIN3 transcription regulator family member B 23309 O75182 SIN3B_HUMAN PAH PF02671 60-104 182-235 322-366, Sin3_corepress PF08295 394-447 435-521, Sin3a_C PF16879 775-1081 Sin3b 107158 Q62141 SIN3B_MOUSE # # Histone modification erase cofactor, TF Histone acetylation, TF repressor 12670868 mSin3A histone, DNA DNA motif # 12670868 Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. #
SIRT1
(details)
14929 sirtuin 1 23411 Q96EB6 SIR1_HUMAN SIR2 PF02146 261-447 Sirt1 2135607 Q923E4 SIR1_MOUSE # # Histone modification erase, Histone modification write cofactor Histone acetylation, Histone methylation 15469825 eNoSc histone H1K26ac, H3K9ac, H4K16ac H1K26, H3K9, H4K16 15469825 SirT1 deacetylates histone polypeptides with a preference for histone H4 lysine 16 (H4-K16Ac) and H3 lysine 9 (H3-K9Ac) in vitro. #
SIRT2
(details)
10886 sirtuin 2 22933 Q8IXJ6 SIR2_HUMAN SIR2 PF02146 84-268 Sirt2 1927664 Q8VDQ8 SIR2_MOUSE # # Histone modification erase, Histone modification write cofactor Histone acetylation, Histone methylation 11427894 # histone H3K18ac, H3K56ac, H4K16ac, H4K20me1 H3K18, H3K56, H4K16, H4K20me2, H4K20me3 11427894 Sir2 =SIRT2 is an NAD-dependent histone deacetylase that mediates transcriptional silencing at mating-type loci, telomeres and ribosomal gene clusters. #
SIRT6
(details)
14934 sirtuin 6 51548 Q8N6T7 SIR6_HUMAN SIR2 PF02146 85-221 Sirt6 1354161 P59941 SIR6_MOUSE # # Histone modification erase Histone acetylation 18337721 # histone H3K9ac, H3K56ac H3K9, H3K56 18337721 The human SIRT6 protein is an NAD+-dependent, histone H3 lysine 9 (H3K9) deacetylase that modulates telomeric chromatin. SIRT6 associates specifically with telomeres, and SIRT6 depletion leads to telomere dysfunction with end-to-end chromosomal fusions and premature cellular senescence. #
SIRT7
(details)
14935 sirtuin 7 51547 Q9NRC8 SIR7_HUMAN SIR2 PF02146 140-273 Sirt7 2385849 Q8BKJ9 SIR7_MOUSE # # Histone modification erase Histone acetylation 22722849 B-WICH histone H3K18ac H3K18 22722849 Genome-wide binding studies reveal that SIRT7 binds to promoters of a specific set of gene targets, where it deacetylates H3K18Ac and promotes transcriptional repression. #
SKP1
(details)
10899 S-phase kinase-associated protein 1 6500 P63208 SKP1_HUMAN Skp1_POZ PF03931 3-68, Skp1 PF01466 113-160 Akp1a 103575 Q9WTX5 SKP1_MOUSE # # Histone modification write cofactor Histone ubiquitination 16943429 BCOR histone # # 16943429 The proteins in the BCOR complex include the PcG and PcG-associated proteins NSPC1, RING1, RNF2, and RYBP as well as components of an SCF ubiquitin ligase, SKP1, and FBXL10. BCOR recruits a unique combination of enzymatic activities to chromatin targets: a PcG E3 ubiquitin ligase for histone H2A, a demethylase for histone H3 K36, and an SCF E3 ubiquitin ligase. #
SLU7
(details)
16939 Pre-mRNA-splicing factor SLU7 (hSlu7) 10569 O95391 SLU7_HUMAN Slu7 PF11708 160-432 Slu7 2385598 Q8BHJ9 SLU7_MOUSE # # RNA modification Alternative splicing 12764196 # RNA mRNA # 12764196 Regulates 3` splice site selection New
SMARCA1
(details)
11097 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1 6594 P28370 SMCA1_HUMAN SNF2-rel_dom PF00176 186-465, Helicase_C PF00271 487-612, HAND PF09110 758-856, SLIDE PF09111 911-1028 Smarca1 1935127 Q6PGB8 SMCA1_MOUSE # # Chromatin remodeling, Histone modification erase Histone acetylation 15310751 NuRF, CERF, CERF chromatin # # 15310751 Mammalian genomes encode two imitation switch family chromatin remodeling proteins, SNF2H and SNF2L =SMARCA1. #
SMARCA2
(details)
11098 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2 6595 P51531 SMCA2_HUMAN QLQ PF08880 174-208, HSA PF07529 438-508, BRK PF07533 591-633, SNF2-rel_dom PF00176 727-1021, Helicase_C PF00271 1051-1164, SnAC PF14619 1259-1326, Bromodomain PF00439 1421-1489 Smarca2 99603 Q6DIC0 SMCA2_MOUSE # # Histone modification read, TF TF activator 22464331 BAF, nBAF, npBAF, WINAC, bBAF, SWI/SNF BRM-BRG1 histone, DNA H3, DNA motif # 22464331 Fig. 5 in the reference. #
SMARCA4
(details)
11100 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4 6597 P51532 SMCA4_HUMAN QLQ PF08880 172-205, HSA PF07529 461-532, BRK PF07533 612-653, SNF2-rel_dom PF00176 754-1051, Helicase_C PF00271 1081-1194, SnAC PF14619 1321-1388, Bromodomain PF00439 1477-1547 Smarca4 88192 Q3TKT4 SMCA4_MOUSE # # Histone modification read, TF TF activator 17582821 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1, CREST-BRG1 histone H3, H4 # 17582821 The BRG1 =SMARCA4 bromodomain exhibits binding, albeit weak, to acetylated peptides that are derived from histones H3 and H4. #
SMARCA5
(details)
11101 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 8467 O60264 SMCA5_HUMAN SNF2-rel_dom PF00176 183-462, Helicase_C PF00271 484-597, HAND PF09110 743-841, SLIDE PF09111 897-1011 Smarca5 1935129 Q91ZW3 SMCA5_MOUSE # # Chromatin remodeling # 10880450 ACF, B-WICH, RSF, CHRAC, NoRC chromatin # # 10880450 The DNA-binding properties of the p15–p17 complex are possibly relevant for incorporation of p15–p17 into chromatin, aided by the nucleosome remodeling activity of hSNF2H =SMARCA5 plus hACF1. #
SMARCAD1
(details)
18398 SWI/SNF-related, matrix-associated actin-dependent regulator of chromatin, subfamily a, containing DEAD/H box 1 56916 Q9H4L7 SMRCD_HUMAN SNF2-rel_dom PF00176 500-786, Helicase_C PF00271 855-967 Smarcad1 95453 Q04692 SMRCD_MOUSE # # Chromatin remodeling # 22960744 # chromatin # # 22960744 The yeast Saccharomyces cerevisiae Fun30 protein and its human counterpart SMARCAD1, two ATP-dependent chromatin remodellers of the Snf2 ATPase family, are directly involved in the DSB response. #
SMARCAL1
(details)
11102 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a-like 1 50485 Q9NZC9 SMAL1_HUMAN HARP PF07443 245-304 344-397, SNF2-rel_dom PF00176 439-688, Helicase_C PF00271 714-822 Smarcal1 1859183 Q8BJL0 SMAL1_MOUSE # # Chromatin remodeling # 11799392 # chromatin # # 11799392 The unique constellation of findings constituting SIOD indicates that SMARCAL1 regulates the transcriptional activity of a particular subset of genes through chromatin remodeling during both development and later life. #
SMARCB1
(details)
11103 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1 6598 Q12824 SNF5_HUMAN INI1_DNA-bd PF21459 12-104, SNF5 PF04855 180-373 Smarcb1 1328366 Q9Z0H3 SNF5_MOUSE # # Histone modification read # 21423274 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1 histone H3K56 # 21423274 Table 1 in the reference (SMARCB1 =Snf5) #
SMARCC1
(details)
11104 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 1 6599 Q92922 SMRC1_HUMAN SWIRM-assoc_2 PF16496 31-165, SWIRM PF04433 459-537, Myb_DNA-binding PF00249 622-664, SWIRM-assoc_3 PF16498 705-772, SWIRM-assoc_1 PF16495 872-952 Smarcc1 1203524 P97496 SMRC1_MOUSE # # Chromatin remodeling cofactor # 10078207 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1 chromatin # # 10078207 The addition of INI1, BAF155 =SMARCC1, and BAF170 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. #
SMARCC2
(details)
11105 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily c, member 2 6601 Q8TAQ2 SMRC2_HUMAN SWIRM-assoc_2 PF16496 5-137, SWIRM PF04433 434-512, Myb_DNA-binding PF00249 600-642, SWIRM-assoc_3 PF16498 683-748, SWIRM-assoc_1 PF16495 864-945 Smarcc2 1915344 Q6PDG5 SMRC2_MOUSE # # Chromatin remodeling cofactor # 10078207 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1 chromatin # # 10078207 The addition of INI1, BAF155, and BAF170 =SMARCC2 to BRG1 increases remodeling activity to a level comparable to that of the whole hSWI/SNF complex. #
SMARCD1
(details)
11106 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1 6602 Q96GM5 SMRD1_HUMAN SWIB PF02201 294-364 Smarcd1 1933623 Q61466 SMRD1_MOUSE # # Chromatin remodeling # 12917342 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, SWI/SNF BRM-BRG1 chromatin # # 12917342 BAF60a =SMARCD1 possesses at least two interaction surfaces, one for GR and BRG1 and a second for BAF155 and BAF170. A GR mutant, GR(R488Q), that fails to interact with BAF60a=SMARCD1 in vitro has reduced chromatin-remodeling activity and reduced transcriptional activity from the promoter assembled as chromatin in vivo. #
SMARCD2
(details)
11107 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 2 6603 Q92925 SMRD2_HUMAN SWIB PF02201 310-379 Smarcd2 1933621 Q99JR8 SMRD2_MOUSE # # Chromatin remodeling cofactor # 20148946 BAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brm, SWI/SNF-like EPAFB, bBAF, SWI/SNF BRM-BRG1 chromatin # # 20148946 The SWI/SNF chromatin remodeling complexes are important regulators of transcription; they consist of large multisubunit assemblies containing either Brm or Brg1 as the catalytic ATPase subunit and a variable subset of approximately 10 Brg/Brm-associated factors (BAF). Among these factors, BAF60 proteins (BAF60a, BAF60b=SMARCD2 or BAF60c), which are found in most complexes, are thought to bridge interactions between transcription factors and SWI/SNF complexes. #
SMARCD3
(details)
11108 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 3 6604 Q6STE5 SMRD3_HUMAN SWIB PF02201 262-333 Smarcd3 1914243 Q6P9Z1 SMRD3_MOUSE # # Chromatin remodeling cofactor # 20148946 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brm, SWI/SNF BRM-BRG1 chromatin # # 20148946 The SWI/SNF chromatin remodeling complexes are important regulators of transcription; they consist of large multisubunit assemblies containing either Brm or Brg1 as the catalytic ATPase subunit and a variable subset of approximately 10 Brg/Brm-associated factors (BAF). Among these factors, BAF60 proteins (BAF60a, BAF60b or BAF60c=SMARCD3), which are found in most complexes, are thought to bridge interactions between transcription factors and SWI/SNF complexes. #
SMARCE1
(details)
11109 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily e, member 1 6605 Q969G3 SMCE1_HUMAN HMG_box PF00505 66-134 Smarce1 1927347 O54941 SMCE1_MOUSE # # Chromatin remodeling cofactor # 12672490 BAF, nBAF, npBAF, PBAF, SWI/SNF_Brg1(I), SWI/SNF_Brg1(II), SWI/SNF_Brm, SWI/SNF-like_EPAFa, WINAC, SWI/SNF-like EPAFB, bBAF chromatin # # 12672490 In addition to Swi2/Snf2 proteins, there is evidence that other core components are required for chromatin-remodeling activity. More recently, two additional human Swi/Snf members, BAF57 =SMARCE1 and BAF60a, have been shown to interact directly with regulatory proteins. #
SMEK1
(details)
20219 SMEK homolog 1, suppressor of mek1 (Dictyostelium) 55671 Q6IN85 P4R3A_HUMAN domain PF22972 5-101, PP4R3 PF04802 141-645 Smek1 1915984 Q6P2K6 P4R3A_MOUSE # # Histone modification erase cofactor Histone phosphorylation 18614045 PPP4C-PPP4R2-PPP4R3A histone H2AFX # # Member of PPP4C-PPP4R2-PPP4R3A PP4 complex which specifically dephosphorylates H2AFX phosphorylated on 'Ser-140' (gamma-H2AFX). #
SMEK2
(details)
29267 SMEK homolog 2, suppressor of mek1 (Dictyostelium) 57223 Q5MIZ7 P4R3B_HUMAN domain PF22972 5-101, PP4R3 PF04802 144-682 Smek2 2144474 Q922R5 P4R3B_MOUSE # # Histone modification erase cofactor Histone phosphorylation 18614045 # histone H2AFX # # Member of PPP4C-PPP4R2-PPP4R3B complex which dephosphorylates H2AFX. #
SMYD1
(details)
20986 SET and MYND domain containing 1 150572 Q8NB12 SMYD1_HUMAN SET PF00856 18-252, zf-MYND PF01753 52-90 Smyd1 104790 P97443 SMYD1_MOUSE ZMYND, KMT Zinc fingers, MYND-type, "Chromatin-modifying enzymes / K-methyltransferases" Histone modification write Histone methylation 22498752 # histone H3K4 H3K4me # SMYD1 methylates histone H3 at Lys-4 (H3K4me), according to UniProt. #
SMYD2
(details)
20982 SET and MYND domain containing 2 56950 Q9NRG4 SMYD2_HUMAN SET PF00856 18-240, zf-MYND PF01753 52-90 Smyd2 1915889 Q8R5A0 SMYD2_MOUSE ZMYND, KMT Zinc fingers, MYND-type, Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 18065756 # histone H3K4, H3K36 H3K4me, H3K36me2 18065756 Some reports indicate that SMYD2 methylates p53 and histone H3. #
SMYD3
(details)
15513 SET and MYND domain containing 3 64754 Q9H7B4 SMYD3_HUMAN SET PF00856 15-239, zf-MYND PF01753 49-87 Smyd3 1916976 Q9CWR2 SMYD3_MOUSE ZMYND, KMT Zinc fingers, MYND-type, Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 15235609 # histone H3K4, H3K5 H3K4me2, H3K4me3, H3K5me2, H3K5me3 15235609 The SET domain of SMYD3 shows histone H3-lysine 4 (H3-K4)-specific methyltransferase activity, which is enhanced in the presence of the heat-shock protein HSP90A. #
SMYD4
(details)
21067 SET and MYND domain containing 4 114826 Q8IYR2 SMYD4_HUMAN SET PF00856 244-574, zf-MYND PF01753 296-335 Smyd4 2442796 Q8BTK5 SMYD4_MOUSE ZMYND Zinc fingers, MYND-type Histone modification erase cofactor Histone acetylation 18714374 # # # # # SMYD4 interacts with HDAC1 and HDAC3. #
SNAI2
(details)
11094 snail family zinc finger 2 6591 O43623 SNAI2_HUMAN zf-C2H2 PF00096 128-150 159-181 185-207 213-235 241-260 Snai2 1096393 P97469 SNAI2_MOUSE SNAI, ZNF Snail homologs, Zinc fingers, C2H2-type Histone modification erase cofactor # 15734731, 22986495 # histone # # # May recruit HDAC1. PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2. #
SP1
(details)
11205 Sp1 transcription factor # P08047 SP1_HUMAN zf-C2H2 PF00096 656-680 686-708 Sp1 98372 O89090 SP1_MOUSE SP, ZNF Specificity protein transcription factors, Zinc fingers, C2H2-type Chromatin remodeling, TF TF activator, TF repressor 17827154, 18850004 CREST-BRG1 DNA DNA motif # 17049555 # #
SP100
(details)
11206 SP100 nuclear antigen 6672 P23497 SP100_HUMAN HSR PF03172 37-146, SAND PF01342 600-678, HMG_box_2 PF09011 697-752, HMG_box PF00505 769-837 Sp100 109561 O35892 SP100_MOUSE PHF Zinc fingers, PHD-type Chromatin remodeling cofactor # 9636146 # chromatin # # 9636146 There is an association between the PML/SP100 NBs and the chromatin nuclear compartment. This supports a model in which the NBs may play a role in certain aspects of chromatin dynamics. #
SP140
(details)
17133 SP140 nuclear body protein 11262 Q13342 SP140_HUMAN HSR PF03172 38-135, SAND PF01342 583-661, PHD PF00628 693-733, Bromodomain PF00439 779-833 Sp140 3702467 # # PHF Zinc fingers, PHD-type Histone modification read, TF # 22464331 # histone H3 # 22464331 Fig. 5 in the reference. #
SPEN
(details)
17575 spen family transcriptional repressor 23013 Q96T58 MINT_HUMAN RRM_1 PF00076 8-67 337-407 439-508 519-583, MINT_MID PF20809 2012-3467, MINT_RID PF20810 2366-2584 3009-3469, MINT_RAM7 PF20808 2654-2749, SPOC PF07744 3506-3662 Spen 1891706 Q62504 MINT_MOUSE RBM RNA binding motif (RRM) containing Histone modification erase cofactor, TF Histone acetylation, TF activator, TF repressor 11331609 # histone # # 11331609 SHARP =SPEN recruits histone deacetylase activity. SHARP is a potent transcriptional repressor whose repression domain (RD) interacts directly with SMRT and at least five members of the NuRD complex including HDAC1 and HDAC2. #
SPOP
(details)
11254 speckle-type POZ protein 8405 O43791 SPOP_HUMAN domain PF22486 33-161, BTB PF00651 191-296 Spop 1343085 Q6ZWS8 SPOP_MOUSE BTBD BTB/POZ domain containing Histone modification write Histone ubiquitination 15897469 # histone MacroH2A1 MacroH2A1ub 15897469 The E3 ubiquitin ligase consisting of SPOP and CULLIN3 is able to ubiquitinate the Polycomb group protein BMI1 and the variant histone MACROH2A. #
SRCAP
(details)
16974 Snf2-related CREBBP activator protein 10847 Q6ZRS2 SRCAP_HUMAN HSA PF07529 125-195, SNF2-rel_dom PF00176 621-906, Helicase_C PF00271 2044-2156 Srcap 2444036 # # # # Chromatin remodeling, Histone modification erase Histone acetylation 17617668 NuA4-related complex, SRCAP histone H2A.Z # 17617668 The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. #
SRRM4
(details)
29389 Serine/arginine repetitive matrix protein 4 (Medulloblastoma antigen MU-MB-2.76) (Neural-specific serine/arginine repetitive splicing factor of 100 kDa) (Neural-specific SR-related protein of 100 kDa) (nSR100) 84530 A7MD48 SRRM4_HUMAN SRRM_C PF15230 459-521 Srrm4 1916205 Q8BKA3 SRRM4_MOUSE # # RNA modification Alternative splicing 29961578 # RNA mRNA # 29961578 Regulates alternative splicing events in genes with important neuronal functions New
SRSF1
(details)
10780 serine/arginine-rich splicing factor 1 6426 Q07955 SRSF1_HUMAN RRM_1 PF00076 18-85 123-184 Srsf1 98283 Q6PDM2 SRSF1_MOUSE SRSF, RBM Serine/arginine-rich splicing factors, RNA binding motif (RRM) containing RNA modification # 24706538 # RNA # # 24706538 H3S10 phosphorylation has been shown to promote the recruitment of per-mRNA-splicing factor SRp20 and alternative-splicing factor (ASF)/per-mRNAsplicing factor 2 (SF2) modular proteins to the chromosomes. #
SRSF10
(details)
16713 Serine/arginine-rich splicing factor 10 (40 kDa SR-repressor protein) (SRrp40) (FUS-interacting serine-arginine-rich protein 1) (Splicing factor SRp38) (Splicing factor, arginine/serine-rich 13A) (TLS-associated protein with Ser-Arg repeats) (TASR) (TLS-associated protein with SR repeats) (TLS-associated serine-arginine protein) (TLS-associated SR protein) 10772 O75494 SRS10_HUMAN RRM_1 PF00076 12-81 Srsf10 1333805 Q9R0U0 SRS10_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11684676 # RNA mRNA # 11684676 Regulates alternative splicing sites of E1A New
SRSF12
(details)
21220 Serine/arginine-rich splicing factor 12 (35 kDa SR repressor protein) (SRrp35) (Splicing factor, arginine/serine-rich 13B) (Splicing factor, arginine/serine-rich 19) 135295 Q8WXF0 SRS12_HUMAN RRM_1 PF00076 12-81 Srsf12 2661424 Q8C8K3 SRS12_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 11684676 # RNA mRNA # 11684676 Regulates alternative splicing sites of E1A New
SRSF3
(details)
10785 serine/arginine-rich splicing factor 3 6428 P84103 SRSF3_HUMAN RRM_1 PF00076 12-77 Srsf3 98285 P84104 SRSF3_MOUSE SRSF, RBM Serine/arginine-rich splicing factors, RNA binding motif (RRM) containing RNA modification # 24706538 # RNA # # 24706538 H3S10 phosphorylation has been shown to promote the recruitment of per-mRNA-splicing factor SRp20 and alternative-splicing factor (ASF)/per-mRNAsplicing factor 2 (SF2) modular proteins to the chromosomes. #
SRSF6
(details)
10788 Serine/arginine-rich splicing factor 6 (Pre-mRNA-splicing factor SRP55) (Splicing factor, arginine/serine-rich 6) 6431 Q13247 SRSF6_HUMAN RRM_1 PF00076 4-64 112-177 Srsf6 1915246 Q3TWW8 SRSF6_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 22767602 # RNA mRNA # 22767602 Promotes Tau exon 10 inclusion New
SS18L1
(details)
15592 synovial sarcoma translocation gene on chromosome 18-like 1 26039 O75177 CREST_HUMAN SSXT PF05030 12-73 Ss18l1 2444061 Q8BW22 CREST_MOUSE # # Chromatin remodeling # 23799466 CREST-BRG1 chromatin # # 23799466 - #
SS18L2
(details)
15593 synovial sarcoma translocation gene on chromosome 18-like 2 51188 Q9UHA2 S18L2_HUMAN SSXT PF05030 12-73 Deb1 1349474 Q9D174 S18L2_MOUSE # # Chromatin remodeling # 19163965, 8666667 # chromatin # # 15986999 # #
SSRP1
(details)
11327 structure specific recognition protein 1 6749 Q08945 SSRP1_HUMAN POB3_N PF17292 3-96, SSrecog PF03531 105-170, PH1_SSRP1-like PF21103 197-327, Rttp106-like_middle PF08512 340-427, HMG_box PF00505 547-615, SSRP1_C PF21092 663-709 Ssrp1 107912 Q08943 SSRP1_MOUSE # # Chromatin remodeling # 12934006 FACT histone H3, H4 # 12934006 Both FACT and Spt16 can bind to nucleosomes and H2A-H2B dimers, whereas SSRP1 can only bind to H3-H4 tetramers but not to intact nucleosomes. Possibly, upon FACT binding to the nucleosome in the transcribed region, Spt16 facilitates the H2A-H2B displacement, which promotes the interaction between SSRP1 and the “altered” nucleosome. #
STK4
(details)
11408 serine/threonine kinase 4 6789 Q13043 STK4_HUMAN Pkinase PF00069 31-281, Mst1_SARAH PF11629 433-480 Stk4 1929004 Q9JI11 STK4_MOUSE # # Histone modification write Histone phosphorylation 12757711 # histone H2AS14 H2BS14ph 12757711 Mst1 =STK4 can phosphorylate H2B at S14 in vitro and in vivo, and the onset of H2B S14 phosphorylation is dependent upon cleavage of Mst1 by caspase-3. #
SUDS3
(details)
29545 suppressor of defective silencing 3 homolog (S. cerevisiae) 64426 Q9H7L9 SDS3_HUMAN Sds3 PF08598 61-186 Suds3 1919204 Q8BR65 SDS3_MOUSE # # Histone modification erase cofactor Histone acetylation 21239494 mSin3A histone # # 21239494 SDS3 is a key component of the histone deacetylase (HDAC)-dependent Sin3A co-repressor complex, serving to maintain its HDAC activity. #
SUPT16H
(details)
11465 suppressor of Ty 16 homolog (S. cerevisiae) 11198 Q9Y5B9 SP16H_HUMAN FACT-Spt16_Nlob PF14826 5-167, Peptidase_M24 PF00557 182-411, SPT16 PF08644 529-689, Rttp106-like_middle PF08512 809-895, SPT16_C PF21091 929-1031 Supt16 1890948 Q920B9 SP16H_MOUSE # # Histone modification read # 12934006 WINAC, FACT histone H2A, H2B # 12934006 Both FACT and Spt16=SUPT16H can bind to nucleosomes and H2A-H2B dimers, whereas SSRP1 can only bind to H3-H4 tetramers but not to intact nucleosomes. Possibly, upon FACT binding to the nucleosome in the transcribed region, Spt16 facilitates the H2A-H2B displacement, which promotes the interaction between SSRP1 and the “altered” nucleosome. #
SUPT3H
(details)
11466 suppressor of Ty 3 homolog (S. cerevisiae) 8464 O75486 SUPT3_HUMAN TFIID-18kDa PF02269 26-115 # # # # # # Histone modification write cofactor Histone acetylation 11564863 PCAF, SAGA, STAGA histone # # 11564863 GCN5 is a histone acetyltransferase (HAT) originally identified in Saccharomyces cerevisiae and required for transcription of specific genes within chromatin as part of the SAGA (SPT-ADA-GCN5 acetylase) coactivator complex. Mammalian cells have two distinct GCN5 homologs (PCAF and GCN5L) that have been found in three different SAGA-like complexes (PCAF complex, TFTC [TATA-binding-protein-free TAFII-containing complex], and STAGA [SPT3-TAFII31-GCN5L acetylase]). #
SUPT6H
(details)
11470 suppressor of Ty 6 homolog (S. cerevisiae) 6830 Q7KZ85 SPT6H_HUMAN SPT6_acidic PF14632 19-126, HTH_44 PF14641 309-424, domain PF22706 565-743, YqgF PF14639 778-931, HHH_7 PF14635 935-1038, HHH_9 PF17674 1050-1139, S1 PF00575 1227-1282, SH2_2 PF14633 1297-1515 Supt6 107726 Q62383 SPT6H_MOUSE SH2D SH2 domain containing Histone modification erase cofactor Histone methylation 23503590 # histone # # # Coordinates H3K27 demethylation. #
SUPT7L
(details)
30632 suppressor of Ty 7 (S. cerevisiae)-like 9913 O94864 ST65G_HUMAN Bromo_TP PF07524 151-228 Supt7l 1919445 Q9CZV5 ST65G_MOUSE # # Histone chaperone # 11564863 TFTC-HAT, STAGA histone # # 11564863 STAGA contains homologs of most yeast SAGA components, including two novel human proteins with histone-like folds and sequence relationships to yeast SPT7 and ADA1. STAGA preferentially acetylates histone H3 within nucleosomes. #
SUV39H1
(details)
11479 suppressor of variegation 3-9 homolog 1 (Drosophila) 6839 O43463 SUV91_HUMAN Chromo PF00385 43-91, Pre-SET PF05033 141-235, SET PF00856 255-366 Suv39h1 1099440 O54864 SUV91_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write, Histone modification write Histone methylation, Histone phosphorylation 10949293 eNoSc histone H3S10, H3K9me1, H4 H3K9me3 10949293 In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. #
SUV39H2
(details)
17287 suppressor of variegation 3-9 homolog 2 (Drosophila) 79723 Q9H5I1 SUV92_HUMAN Chromo PF00385 47-95, Pre-SET PF05033 149-242, SET PF00856 262-373 Suv39h2 1890396 Q9EQQ0 SUV92_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation 15107829 # histone H3K9me1 H3K9me3 15107829 Suv39h proteins are histone methyltransferases that methylate histone H3 on lysine 9, resulting in transcriptional repression or silencing of target genes. #
SUV420H1
(details)
24283 suppressor of variegation 4-20 homolog 1 (Drosophila) 51111 Q4FZB7 SV421_HUMAN SET PF00856 209-308 Suv420h1 2444557 Q3U8K7 SV421_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation # # histone H4K20 H4K20me3 # Histone methyltransferase that specifically trimethylates 'Lys-20' of histone H4. H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. (Annotated by similarity.) #
SUV420H2
(details)
28405 suppressor of variegation 4-20 homolog 2 (Drosophila) 84787 Q86Y97 SV422_HUMAN SET PF00856 120-218 Suv420h2 2385262 Q6Q783 SV422_MOUSE KMT Chromatin-modifying enzymes / K-methyltransferases Histone modification write Histone methylation # # histone H4K20 H4K20me3 # Histone methyltransferase that specifically trimethylates 'Lys-20' of histone H4. H4 'Lys-20' trimethylation represents a specific tag for epigenetic transcriptional repression. (Annotated by similarity.) #
SUZ12
(details)
17101 SUZ12 polycomb repressive complex 2 subunit 23512 Q15022 SUZ12_HUMAN VEFS-Box PF09733 548-680 Suz12 1261758 Q80U70 SUZ12_MOUSE ZNF Zinc fingers, C2H2-type Histone modification write cofactor, Histone modification write cofactor, Polycomb group (PcG) protein, TF Histone methylation, Histone ubiquitination, TF repressor 15385962 PRC2 DNA DNA motif # 15385962 SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). #
SYNCRIP
(details)
16918 synaptotagmin binding, cytoplasmic RNA interacting protein 10492 O60506 HNRPQ_HUMAN hnRNP_Q_AcD PF18360 34-103, RRM_1 PF00076 164-229 245-307 340-401 Syncrip 1891690 Q7TMK9 HNRPQ_MOUSE RBM RNA binding motif (RRM) containing RNA modification mRNA editing 11134005, 11352648 APOB_mRNA_editosome RNA mRNA # 11134005, 11352648 GRY-RBP =HNRPQ has been shown to bind to apobec-1, the catalytic component of apoB mRNA editosome, in vivo and in vitro. #
TADA1
(details)
30631 transcriptional adaptor 1 117143 Q96BN2 TADA1_HUMAN SAGA-Tad1 PF12767 7-107 136-193 Tada1 1196415 Q99LM9 TADA1_MOUSE # # Histone chaperone # 11564863 STAGA histone H2A # 11564863 Within STAGA are two novel histone fold-containing protein subunits: STAF65γ, which is encoded by the KIAA0764 gene of previously unknown function, and STAF42=TADA1, a novel histone H2A-like protein. #
TADA2A
(details)
11531 transcriptional adaptor 2A 6871 O75478 TAD2A_HUMAN Myb_DNA-binding PF00249 74-118, domain PF22941 165-240, SWIRM PF04433 375-440 Tada2a 2144471 Q8CHV6 TAD2A_MOUSE # # Histone modification read, TF TF activator 19103755 PCAF, ATAC histone H3 # 19103755 The SANT domain of c-Myb has been shown to bind histone H3 tails and position them for acetylation. The SANT domains in ADA2a=TADA2A and ZZZ3/ATAC1 might enable the complex to associate with nucleosome tails in order to potentiate the catalytic activities of GCN5 and ATAC2, similar to what has been shown for the SANT domains in yeast Ada2 and Swi3. #
TADA2B
(details)
30781 transcriptional adaptor 2B 93624 Q86TJ2 TAD2B_HUMAN Myb_DNA-binding PF00249 68-112, domain PF22941 164-237 Tada2b 3035274 # # # # Histone modification write cofactor Histone acetylation 17694077 TFTC-HAT histone # # 17694077 ADA2b =TADA2B is present in human STAGA/TFTC-type complexes. #
TADA3
(details)
19422 transcriptional adaptor 3 10474 O75528 TADA3_HUMAN Ada3 PF10198 311-418 Tada3 1915724 Q8R0L9 TADA3_MOUSE # # Histone modification write cofactor Histone acetylation 11773077 PCAF, TFTC-HAT, ATAC, STAGA histone # # 11773077 Ada2 potentiates the Gcn5 catalytic activity and Ada3 =TADA3 facilitates nucleosomal acetylation and an expanded lysine specificity. #
TAF1
(details)
11535 TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa 6872 P21675 TAF1_HUMAN TBP-binding PF09247 27-87, DUF3591 PF12157 589-1050, zf-CCHC_6 PF15288 1282-1324, Bromodomain PF00439 1411-1492 1538-1613 Taf1 1336878 Q80UV9 TAF1_MOUSE KAT Chromatin-modifying enzymes / K-acetyltransferases Histone modification write Histone acetylation 11295558 CHD8, MLL2/3, MLL4/WBP7 histone H3, H4 H3ac, H4ac 11295558 TAFII250 has histone acetyltransferase (HAT) activity and can acetylate the tails of the core histones H3 and H4 in vitro. Both the N- and C-terminal kinase domains of TAFII250 are required for efficient transphosphorylation of RAP74 on serine residues. This suggests that the targeted phosphorylation of RAP74 by TAFII250 may provide a mechanism for signaling between components within the initiation complex to regulate transcription. #
TAF10
(details)
11543 TAF10 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 30kDa 6881 Q12962 TAF10_HUMAN TFIID_30kDa PF03540 128-177 Taf10 1346320 Q8K0H5 TAF10_MOUSE # # Histone chaperone, Histone modification write Histone acetylation 15099517 PCAF, TFTC-HAT, SAGA, STAGA histone H3, H4 # 15099517 SET9 can monomethylate the TBP-associated factor TAF10 at a single lysine residue located at the loop 2 region within the putative histone-fold domain of the protein. #
TAF12
(details)
11545 TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20kDa 6883 Q16514 TAF12_HUMAN TFIID_20kDa PF03847 59-126 Taf12 1913714 Q8VE65 TAF12_MOUSE # # Histone chaperone, Histone modification write Histone acetylation 10594036 PCAF, STAGA histone # # 10594036 Heterodimerization requires the alpha2 and alpha3 helices of the hTAF(II)20 histone fold and is abolished by mutations in the hydrophobic face of the hTAF(II)20 alpha2 helix. Interaction with hTAF(II)20 requires a domain of hTAF(II)135 which shows sequence homology to H2A. #
TAF1L
(details)
18056 TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 210kDa-like 138474 Q8IZX4 TAF1L_HUMAN TBP-binding PF09247 26-86, DUF3591 PF12157 583-1047, zf-CCHC_6 PF15288 1278-1322, Bromodomain PF00439 1409-1488 1536-1612 # # # # # # Histone modification read # 22464331 # histone H1.4ac, H2Aac, H2Bac, H3ac, H4ac # 22464331 Interacts (via bromo domains) with acetylated lysine residues on the N-terminus of histone H1.4, H2A, H2B, H3 and H4 (in vitro). #
TAF2
(details)
11536 TAF2 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 150kDa 6873 Q6P1X5 TAF2_HUMAN Taf2 2443028 Q8C176 TAF2_MOUSE # # TF # # TFTC-HAT DNA DNA motif # # Added because it is a complex partner #
TAF3
(details)
17303 TAF3 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 140kDa 83860 Q5VWG9 TAF3_HUMAN Bromo_TP PF07524 4-79, PHD PF00628 867-912 Taf3 2388097 Q5HZG4 TAF3_MOUSE PHF Zinc fingers, PHD-type Histone modification read # 21423274 # histone H3K4me # 21423274 Table 1 in the reference. #
TAF4
(details)
11537 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa 6874 O00268 TAF4_HUMAN TAFH PF07531 592-680, TAF4 PF05236 833-1082 # # # # # # Histone chaperone # 10594036 TFTC-HAT, CHD8, MLL2/3, MLL4/WBP7 histone # # 10594036 The histone fold region of hTAFII135 is required for coactivator activity in mammalian cells. #
TAF5
(details)
11539 TAF5 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 100kDa 6877 Q15542 TAF5_HUMAN TFIID_NTD2 PF04494 210-340, WD40 PF00400 466-498 535-571 577-612 618-655 660-697 703-739 Taf5 2442144 Q8C092 TAF5_MOUSE WDR WD repeat domain containing Histone modification write cofactor Histone acetylation 10373431 TFTC-HAT histone # # 10373431 TFTC, similar to other TBP-free TAFII complexes (yeast SAGA, hSTAGA, and hPCAF) contains the acetyltransferase hGCN5 and is able to acetylate histones in both a free and a nucleosomal context. A monoclonal antibody raised against hTAFII100 recognized hTAFII100=TAF5 not only in TFTC, but detected also a weak band in the PCAF complex. #
TAF5L
(details)
17304 TAF5-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa 27097 O75529 TAF5L_HUMAN TFIID_NTD2 PF04494 66-196, WD40 PF00400 269-296 334-370 379-412 418-454 459-496 501-538 Taf5l 1919039 Q91WQ5 TAF5L_MOUSE WDR WD repeat domain containing Histone modification write cofactor Histone acetylation 10373431 PCAF, TFTC-HAT, STAGA histone # # 10373431 The PCAF complex contains hPAF65β=TAF5L, a WD40 repeat-containing factor having similarity to Htafii100(row=423) (5). Antibodies raised against hPAF65β revealed a band around 65 kDa in both the PCAF and the TFTC complexes. #
TAF6
(details)
11540 TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 80kDa 6878 P49848 TAF6_HUMAN TAF PF02969 12-76, TAF6_C PF07571 214-399 Taf6 109129 Q62311 TAF6_MOUSE # # Histone chaperone # 9611234 TFTC-HAT, CHD8, MLL2/3, MLL4/WBP7 DNA # # 9611234 The N-CoR/Sin3/HDAc complexes have a key role in the regulation of cellular proliferation and differentiation. N-CoR interacts directly with each of the basal factors, TFIIB and TAFII70 (=TAF6). #
TAF6L
(details)
17305 TAF6-like RNA polymerase II, p300/CBP-associated factor (PCAF)-associated factor, 65kDa 10629 Q9Y6J9 TAF6L_HUMAN TAF PF02969 10-73, TAF6_C PF07571 155-327 Taf6l 2444957 Q8R2K4 TAF6L_MOUSE # # Histone chaperone # 12601814 PCAF, TFTC-HAT, STAGA histone # # 12601814 Human PAF65-alpha shows a strong sequence homology to TAFII80 and also contains a putative HFD. Thus, PAF65-alpha may also interact with TAFII32 in the TFTC complex. #
TAF7
(details)
11541 TAF7 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 55kDa 6879 Q15545 TAF7_HUMAN TAFII55_N PF04658 13-176 Taf7 1346348 Q9R1C0 TAF7_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation 22711989 CHD8, MLL2/3, MLL4/WBP7 histone # # 22711989 The largest transcription factor IID (TFIID) subunit, TBP-associated factor 1 (TAF1), possesses protein kinase and histone acetyltransferase (HAT) activities. #
TAF8
(details)
17300 TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa 129685 Q7Z7C8 TAF8_HUMAN Bromo_TP PF07524 32-105, TAF8_C PF10406 146-195 Taf8 1926879 Q9EQH4 TAF8_MOUSE # # Histone chaperone # 17375202 # histone # # 17375202 Present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L. #
TAF9
(details)
11542 TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa 6880 Q16594 TAF9_HUMAN TFIID-31kDa PF02291 10-130 Taf9 1888697 Q8VI33 TAF9_MOUSE # # Histone chaperone # 9674425 PCAF, STAGA, CHD8, MLL2/3, MLL4/WBP7 DNA # # 9674425 Histone-like TAFs, including TAFII31 =TAF9, are found within the PCAF histone acetylase complex. #
TAF9B
(details)
17306 TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa 51616 Q9HBM6 TAF9B_HUMAN TFIID-31kDa PF02291 10-130 Taf9b 3039562 Q6NZA9 TAF9B_MOUSE # # Histone chaperone # 15899866 TFTC-HAT histone # # 15899866 TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. #
TBL1XR1
(details)
29529 transducin (beta)-like 1 X-linked receptor 1 79718 Q9BZK7 TBL1R_HUMAN LisH PF08513 6-32, WD40 PF00400 164-197 226-252 258-294 340-377 382-428 432-470 Tbl1xr1 2441730 Q8BHJ5 TBL1R_MOUSE WDR WD repeat domain containing # # 15601853 # histone # # # Targets Ncor repressive complex to deacethylated histones. #
TDG
(details)
11700 thymine-DNA glycosylase 6996 Q13569 TDG_HUMAN UDG PF03167 129-288 Tdg 108247 P56581 TDG_MOUSE # # DNA modification DNA hydroxymethylation 22962365 # DNA G:U, G:T, G:hmU C, 5mC, 5hmC 22962365 The mammalian thymine DNA glycosylase (TDG) is implicated in active DNA demethylation via the base excision repair pathway. #
TDRD3
(details)
20612 tudor domain containing 3 81550 Q9H7E2 TDRD3_HUMAN RMI1_N_C PF08585 1-72, domain PF22562 195-233, TUDOR PF00567 555-611 Tdrd3 2444023 Q91W18 TDRD3_MOUSE TDRD Tudor domain containing Histone modification read # 21172665 # histone H3R17me2a, H4R3me2a # 21172665 TDRD3 is an effector molecule for arginine-methylated histone marks. #
TDRD7
(details)
30831 tudor domain containing 7 23424 Q8NHU6 TDRD7_HUMAN OST-HTH PF12872 7-72 236-274, TUDOR PF00567 462-582 653-775 912-1026 Tdrd7 2140279 Q8K1H1 TDRD7_MOUSE TDRD Tudor domain containing Histone modification read # 21423274 # histone H3K9 # 21423274 Table 1 in the reference. #
TDRKH
(details)
11713 tudor and KH domain containing 11022 Q9Y2W6 TDRKH_HUMAN KH_1 PF00013 54-116 126-190, TUDOR PF00567 305-423 Tdrkh 1919884 Q80VL1 TDRKH_MOUSE TDRD Tudor domain containing RNA modification # 23714778 # RNA piRNA # 23714778 Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. The evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis, the primary piRNA biogenesis pathway involves 3'→5' processing of 31-37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. #
TET1
(details)
29484 tet methylcytosine dioxygenase 1 80312 Q8NFU7 TET1_HUMAN zf-CXXC PF02008 585-625, Tet_JBP PF12851 1580-2051 Tet1 1098693 Q3URK3 TET1_MOUSE # # DNA modification DNA hydroxymethylation 23222540 # DNA mC hmC 23222540 Ten eleven translocation (TET) enzymes, including TET1, TET2 and TET3, convert 5-methylcytosine to 5-hydroxymethylcytosine and regulate gene transcription. #
TET2
(details)
25941 tet methylcytosine dioxygenase 2 54790 Q6N021 TET2_HUMAN Tet_JBP PF12851 1290-1904 Tet2 2443298 Q4JK59 TET2_MOUSE # # DNA modification DNA hydroxymethylation 23222540 # DNA mC hmC 23222540 Ten eleven translocation (TET) enzymes, including TET1, TET2 and TET3, convert 5-methylcytosine to 5-hydroxymethylcytosine and regulate gene transcription. Downregulation of TET2 reduces the amount of histone 2B Ser 112 GlcNAc marks in vivo, which are associated with gene transcription regulation. #
TET3
(details)
28313 tet methylcytosine dioxygenase 3 200424 O43151 TET3_HUMAN zf-CXXC PF02008 52-90, Tet_JBP PF12851 986-1697 Tet3 2446229 Q8BG87 TET3_MOUSE # # DNA modification DNA hydroxymethylation 23222540 # DNA mC hmC 23222540 Ten eleven translocation (TET) enzymes, including TET1, TET2 and TET3, convert 5-methylcytosine to 5-hydroxymethylcytosine and regulate gene transcription. There is a direct interaction of TET2 and TET3 with O-GlcNAc transferase (OGT). #
TEX10
(details)
25988 testis expressed 10 54881 Q9NXF1 TEX10_HUMAN Ipi1_N PF12333 134-239 Tex10 1344413 Q3URQ0 TEX10_MOUSE # # Histone modification write cofactor, Histone modification write cofactor Histone methylation, Histone acetylation # CHD8, MLL2/3, MLL4/WBP7 histone # # 22872859 - #
TFDP1
(details)
11749 transcription factor Dp-1 7027 Q14186 TFDP1_HUMAN E2F_TDP PF02319 113-193, DP PF08781 200-338 Tfdp1 101934 Q08639 TFDP1_MOUSE # # Histone modification # 24217316, 22325352 RING2-L3MBTL2 histone # # 24217316, 22325352 Part of a RING2 complex. #
TFPT
(details)
13630 TCF3 (E2A) fusion partner (in childhood Leukemia) 29844 P0C1Z6 TFPT_HUMAN Tfpt 1916964 Q3U1J1 TFPT_MOUSE INO80 INO80 complex subunits Chromatin remodeling cofactor, DNA modification DNA hydroxymethylation 16230350 Ino80 chromatin # # 16230350 Subunit Composition of the hINO80 Complex: These proteins included the “Pim-1 kinase-associated protein-associated protein 1” (PAPA-1, GI 13775202), Amida (also known as TCF3 =TFPT). #
THRAP3
(details)
22964 Thyroid hormone receptor-associated protein 3 (BCLAF1 and THRAP3 family member 2) (Thyroid hormone receptor-associated protein complex 150 kDa component) (Trap150) 9967 Q9Y2W1 TR150_HUMAN THRAP3_BCLAF1 PF15440 107-862 Tr150 2442637 Q569Z6 TR150_MOUSE # # RNA modification RNA degradation 20123736 # RNA mRNA # 20123736 Mediates nuclear mRNA degradation New
TLE1
(details)
11837 transducin-like enhancer of split 1 (E(sp1) homolog, Drosophila) 7088 Q04724 TLE1_HUMAN TLE_N PF03920 18-132, WD40 PF00400 477-511 531-558 577-602 607-644 692-725 739-766 Tle1 104636 Q62440 TLE1_MOUSE WDR WD repeat domain containing Chromatin remodeling, Histone modification cofactor # 9334241, 17041588 # histone H3 # 9334241, 17041588 Native Groucho/TLE proteins interact specifically with histone H3 and not with other core histones. #
TLE2
(details)
11838 transducin-like enhancer of split 2 7089 Q04725 TLE2_HUMAN TLE_N PF03920 18-130, WD40 PF00400 450-484 504-531 550-575 580-617 665-698 712-739 Tle2 104635 Q9WVB2 TLE2_MOUSE WDR WD repeat domain containing Histone modification cofactor # 17041588 # histone H3 H3K4, H3K9, H3K27me 17041588 CUL4-DDB1 complexes interact with multiple WD40-repeat proteins (WDRs) including TLE1-3, WDR5, L2DTL (also known as CDT2) and the Polycomb-group protein EED (also known as ESC). WDR5 and EED are core components of histone methylation complexes that are essential for histone H3 methylation and epigenetic control at K4 or K9 and K27, respectively. #
TLE4
(details)
11840 transducin-like enhancer of split 4 7091 Q04727 TLE4_HUMAN TLE_N PF03920 24-138, WD40 PF00400 480-514 534-561 580-605 610-647 695-728 742-769 Tle4 104633 Q62441 TLE4_MOUSE WDR WD repeat domain containing Histone modification erase cofactor, TF # 24190972 # histone H3ac, H4ac # 24190972 Tle4 is the transcriptional repressor responsible for the establishment of the epigenetic repressive marks at the Ifng locus that result in silencing of Ifng gene expression. Tle proteins have been shown to oligomerize, to associate with amino-terminal domains of histone-modifying proteins, and to form higher-order structures as parts of repressive complexes. #
TLK1
(details)
11841 tousled-like kinase 1 9874 Q9UKI8 TLK1_HUMAN Pkinase PF00069 458-734 Tlk1 2441683 Q8C0V0 TLK1_MOUSE # # Histone modification write Histone phosphorylation 11314006 # histone H3S10 H3S10ph 11314006 Purified TLK1B phosphorylates histone H3 at S(10) with high specificity both in a mix of core histones and in isolated chromatin, suggesting that histone H3 is a physiological substrate for TLK1B. #
TLK2
(details)
11842 tousled-like kinase 2 11011 Q86UE8 TLK2_HUMAN Pkinase PF00069 464-741 Tlk2 1346023 O55047 TLK2_MOUSE # # Histone modification write Histone phosphorylation 12660173 # chromatin # # 12660173 There is a functional co-operation between ATM and Chk1 in propagation of a checkpoint response during S phase, suggesting that, through transient inhibition of Tlk kinases, the ATM-Chk1-Tlk pathway may regulate processes involved in chromatin assembly. #
TNP1
(details)
11951 transition protein 1 (during histone to protamine replacement) 7141 P09430 STP1_HUMAN TP1 PF02079 1-53 Tnp1 98784 P10856 STP1_MOUSE # # Chromatin remodeling # 12743712 # chromatin # # 12743712 Distinct roles for the two major transition nuclear proteins, TP1 = STP1 and TP2 = STP2, in histone displacement, sperm nuclear shaping, chromatin condensation, and maintenance of DNA integrity have been proposed. #
TNP2
(details)
11952 transition protein 2 (during histone to protamine replacement) 7142 Q05952 STP2_HUMAN TP2 PF01254 1-136 Tnp2 98785 P11378 STP2_MOUSE # # Chromatin remodeling # 12743712 # chromatin # # 12743712 Distinct roles for the two major transition nuclear proteins, TP1 = STP1 and TP2 = STP2, in histone displacement, sperm nuclear shaping, chromatin condensation, and maintenance of DNA integrity have been proposed. #
TONSL
(details)
7801 tonsoku-like, DNA repair protein 4796 Q96HA7 TONSL_HUMAN TPR_8 PF13181 202-235, domain PF13176 311-344, Ank_2 PF12796 529-628, LRR_6 PF13516 1097-1120 1128-1151 1248-1271 Tonsl 1919999 Q6NZL6 TONSL_MOUSE ANKRD Ankyrin repeat domain containing Chromatin remodeling # 21113133 # histone # # 21113133 Mms22L associates with Nfkbil2 =TONSL, which may function as a scaffolding unit to bridge chromatin to multiple protein complexes. #
TOP2A
(details)
11989 topoisomerase (DNA) II alpha 170kDa 7153 P11388 TOP2A_HUMAN HATPase_c PF02518 80-176, DNA_gyraseB PF00204 265-425, Toprim PF01751 456-562, TOPRIM_C PF16898 574-711, DNA_topoisoIV PF00521 713-1171, DTHCT PF08070 1231-1511 Top2a 98790 Q01320 TOP2A_MOUSE # # Chromatin remodeling # 11062478 # DNA DNA # 11062478 Histone deacetylase interacts directly with DNA topoisomerase II. #
TOP2B
(details)
11990 topoisomerase (DNA) II beta 180kDa 7155 Q02880 TOP2B_HUMAN HATPase_c PF02518 101-197, DNA_gyraseB PF00204 286-447, Toprim PF01751 477-583, TOPRIM_C PF16898 594-731, DNA_topoisoIV PF00521 734-1193, DTHCT PF08070 1447-1626 Top2b 98791 Q64511 TOP2B_MOUSE # # Chromatin remodeling # 11062478 WINAC chromatin # # 11062478 Histone deacetylase interacts directly with DNA topoisomerase II. #
TP53
(details)
11998 tumor protein p53 7157 P04637 P53_HUMAN P53_TAD PF08563 13-33, TAD2 PF18521 23-55, P53 PF00870 101-288, P53_tetramer PF07710 323-357 Trp53 98834 P02340 P53_MOUSE # # Histone modification write cofactor, TF Histone acetylation, TF activator, TF repressor 23870121 # histone H3 # 23870121 SET1 complex (SET1C)-mediated H3K4 trimethylation is dependent upon p53- and p300-mediated H3 acetylation. Complementary cell-based assays demonstrate a DNA-damage-induced p53-SET1C interaction, a corresponding enrichment of SET1C and H3K4me3 on a p53 target gene (p21/WAF1), and a corresponding codependency of H3K4 trimethylation and transcription upon p300 and SET1C. #
TP53BP1
(details)
11999 tumor protein p53 binding protein 1 7158 Q12888 TP53B_HUMAN 53-BP1_Tudor PF09038 1481-1604, BRCT_3 PF18428 1866-1968 Trp53bp1 1351320 P70399 TP53B_MOUSE # # Histone modification read # 15525939 # histone H4K79me2, H4K20me2 # 15525939 In vitro, the 53BP1 =TP53BP1 tandem tudor domain binds histone H3 methylated on Lys 79 using residues that form the walls of the pocket; these residues are also required for recruitment of 53BP1 to DSBs. #
TRA2B
(details)
10781 Transformer-2 protein homolog beta (TRA-2 beta) (TRA2-beta) (hTRA2-beta) (Splicing factor, arginine/serine-rich 10) (Transformer-2 protein homolog B) 6434 P62995 TRA2B_HUMAN RRM_1 PF00076 122-190 Tra2B 106016 P62996 TRA2B_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 12165565 # RNA mRNA # 12165565 Promotes exon 7 inclusion of SMN New
TRIM16
(details)
17241 tripartite motif containing 16 10626 O95361 TRI16_HUMAN zf-B_box PF00643 127-165, PRY PF13765 375-424, SPRY PF00622 426-543 Trim16 2137356 Q99PP9 TRI16_MOUSE TRIM Tripartite motif containing / Tripartite motif containing Histone modification write Histone acetylation 19147277, 20729920 # histone, DNA # # # Overexpression of this gene increases histone acetylation. TRIM16 has been identified as a DNA-binding protein with histone acetylase activity. #
TRIM24
(details)
11812 tripartite motif containing 24 8805 O15164 TIF1A_HUMAN zf-B_box PF00643 221-258, PHD PF00628 829-870, Bromodomain PF00439 908-989 Trim24 109275 Q64127 TIF1A_MOUSE TRIM, RNF, PHF Tripartite motif containing / Tripartite motif containing, RING-type (C3HC4) zinc fingers, Zinc fingers, PHD-type Histone modification read # 22464331 # histone H3K4, H3K23ac # 21164480 Interacts with chromatin depending on histone H3 modifications, having the highest affinity for histone H3 that is both unmodified at 'Lys-4' (H3K4me0) and acetylated at 'Lys-23' (H3K23ac) (UniProt). #
TRIM27
(details)
9975 tripartite motif containing 27 5987 P14373 TRI27_HUMAN zf-C3HC4_4 PF15227 16-56, zf-B_box PF00643 93-132, PRY PF13765 318-366, SPRY PF00622 370-482 Trim27 97904 Q62158 TRI27_MOUSE TRIM, RNF Tripartite motif containing / Tripartite motif containing, RING-type (C3HC4) zinc fingers Histone modification erase cofactor Histone acetylation 19351825 # # # # # The recruitment of HDAC1 to the TBP-2 promoter is mediated by a protein complex consisting of RET finger protein (RFP; also called TRIM27) and the trimeric transcription factor NF-Y. #
TRIM28
(details)
16384 tripartite motif containing 28 10155 Q13263 TIF1B_HUMAN zf-RING_5 PF14634 65-122, zf-B_box PF00643 149-195 207-245, PHD PF00628 628-669 Trim28 109274 Q62318 TIF1B_MOUSE TRIM, RNF, PHF Tripartite motif containing / Tripartite motif containing, RING-type (C3HC4) zinc fingers, Zinc fingers, PHD-type Histone modification read # 22464331 # histone H3 # 22464331 Fig. 5 in the reference. #
TRIM33
(details)
16290 tripartite motif containing 33 51592 Q9UPN9 TRI33_HUMAN zf-B_box PF00643 274-310, PHD PF00628 890-931, Bromodomain PF00439 967-1046 Trim33 2137357 Q99PP7 TRI33_MOUSE TRIM, PHF, RNF Tripartite motif containing / Tripartite motif containing, Zinc fingers, PHD-type, RING-type (C3HC4) zinc fingers Histone modification read # 23926104 # histone H3K9me3, H3K18ac # 23926104 TRIM33 helps recruit SMAD2/3 to chromatin via interaction of its PHD and Bromo domains with histone H3 trimethylated at lysine 9 (H3K9me3) and histone H3 acetylated at lysine 18 (H3K18ac), respectively. #
TRRAP
(details)
12347 transformation/transcription domain-associated protein 8295 Q9Y4A5 TRRAP_HUMAN Tra1_central PF20175 240-895, Tra1_ring PF20206 1003-2695, FAT PF02259 2851-3201, PI3_PI4_kinase PF00454 3531-3782 Trrap 2153272 Q80YV3 TRRAP_MOUSE # # Histone modification write cofactor Histone acetylation 14966270 SWR, PCAF, TFTC-HAT, NuA4, SAGA, NuA4-related complex, STAGA histone # # 14966270 The complex(es) contain(s) other subunits shared with NuA4, including TRRAP, p400/hDomino, Brd8. #
TRUB2
(details)
17170 Mitochondrial mRNA pseudouridine synthase TRUB2 (EC 5.4.99.-) 26995 O95900 TRUB2-HUMAN TruB_N PF01509 88-231 Trub2 2442186 Q91WG3 TRUB2_MOUSE Pseudouridine synthases Pseudouridine synthases RNA modification RNA pseudouridinilation 27974379 # RNA mt--mRNA U 27974379 Pseudouridinilation of mitochondrial mRNA New
TSSK6
(details)
30410 testis-specific serine kinase 6 83983 Q9BXA6 TSSK6_HUMAN Pkinase PF00069 12-267 Tssk6 2148775 Q925K9 TSSK6_MOUSE # # Histone modification write Histone phosphorylation 15870294 # histone H1, H2A, H2AX, H3 # # Phosphorylates histones H1, H2A, H2AX, and H3 but not H2B or H4 in vitro. #
TTK
(details)
12401 TTK protein kinase 7272 P33981 TTK_HUMAN Pkinase PF00069 525-791 Ttk 1194921 P35761 TTK_MOUSE # # Histone modification write cofactor Histone phosphorylation 22732840 # histone H2AT120 H2AT120ph 22732840 Mps1 = TTK activity enhances H2A‐T120ph and is critical for Sgo1 recruitment to centromeres, thereby promoting Aurora B centromere recruitment in early mitosis. #
TYW5
(details)
26754 tRNA-yW synthesizing protein 5 129450 A2RUC4 TYW5_HUMAN Cupin_8 PF13621 17-254 Tyw5 1915986 A2RSX7 TYW5_MOUSE # # RNA modification # 20972222 # RNA # # 20972222 Functional analyses of structure-based mutants have revealed the essential Arg residues participating in tRNA recognition by TYW5. These findings extend the repertoire of the tRNA modification enzyme into the Fe(II)/2-OG oxygenase superfamily. #
U2AF2
(details)
23156 Splicing factor U2AF 65 kDa subunit (U2 auxiliary factor 65 kDa subunit) (hU2AF(65)) (hU2AF65) (U2 snRNP auxiliary factor large subunit) 11338 P26368 U2AF2_HUMAN RRM_1 PF00076 151-225 261-330 400-459 U2Af2 98886 P26369 U2AF2_MOUSE RBM RNA binding motif containing RNA modification Alternative splicing 17579712, 16452196 # RNA mRNA # 17579712, 16452196 Regulates alternative splcing of FIR New
UBE2A
(details)
12472 ubiquitin-conjugating enzyme E2A 7319 P49459 UBE2A_HUMAN UQ_con PF00179 8-143 Ube2a 102959 Q9Z255 UBE2A_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 8797826 # histone H2A, H2BK120 H2BK120ub1 8797826 RAD6 (=UBE2) has been identified as the first ubiquitin-conjugating enzyme, able to mono- and polyubiquitinate histones 2A and 2B in vitro. #
UBE2B
(details)
12473 ubiquitin-conjugating enzyme E2B 7320 P63146 UBE2B_HUMAN UQ_con PF00179 7-143 Ube2b 102944 P63147 UBE2B_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 8797826 # histone H2A, H2BK121 H2BK120ub2 8797826 RAD6 (=UBE2) has been identified as the first ubiquitin-conjugating enzyme, able to mono- and polyubiquitinate histones 2A and 2B in vitro. #
UBE2D1
(details)
12474 ubiquitin-conjugating enzyme E2D 1 7321 P51668 UB2D1_HUMAN UQ_con PF00179 5-141 Ube2d1 2384911 P61080 UB2D1_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 22438555 # histone H2BK48 H2BK48ub 22438555 Ubiquitination of TP53. #
UBE2D3
(details)
12476 ubiquitin-conjugating enzyme E2D 3 7323 P61077 UB2D3_HUMAN UQ_con PF00179 5-141 Ube2d3 1913355 P61079 UB2D3_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 21772249 # histone H2AK119 H2AK119ub 21772249 Figure 7 in the reference (UBE2D3 =UbcH5c). #
UBE2E1
(details)
12477 ubiquitin-conjugating enzyme E2E 1 7324 P51965 UB2E1_HUMAN UQ_con PF00179 51-187 Ube2e1 107411 P52482 UB2E1_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 16307923 # histone H2BK120 H2BK120ub 16307923 The human RNF20/40 complex functions as the E3 ligase and UbcH6 (=UBE2E1) as the ubiquitin E2-conjugating enzyme for histone H2B-K120 monoubiquitination. #
UBE2H
(details)
12484 ubiquitin-conjugating enzyme E2H 7328 P62256 UBE2H_HUMAN UQ_con PF00179 30-144 Ube2h 104632 P62257 UBE2H_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 8132613 # histone H2A, H2B H2Aub, H2Bub 8132613 The capacity of the UBC8I UbcH2 enzymes to ubiquitinate histones in vitro raises makes it possible that these enzymes may be involved in this process in vivo. #
UBE2N
(details)
12492 ubiquitin-conjugating enzyme E2N 7334 P61088 UBE2N_HUMAN UQ_con PF00179 7-143 Ube2n 1934835 P61089 UBE2N_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 17709392 # histone H2AX H2AXub 17709392 TIP60 regulates the ubiquitination of H2AX via the ubiquitin-conjugating enzyme UBC13 (=UBE2N), which is induced by DNA damage. #
UBE2T
(details)
25009 ubiquitin-conjugating enzyme E2T (putative) 29089 Q9NPD8 UBE2T_HUMAN UQ_con PF00179 6-146 Ube2t 1914446 Q9CQ37 UBE2T_MOUSE UBE2 Ubiquitin-conjugating enzymes E2 Histone modification write Histone ubiquitination 17938197 # histone # # 17938197 histone #
UBN1
(details)
12506 ubinuclein 1 29855 Q9NPG3 UBN1_HUMAN HUN PF08729 118-170, UBN_AB PF14075 346-567 Ubn1 1891307 Q4G0F8 UBN1_MOUSE # # Histone modification write cofactor Histone methylation 19029251, 21807893 # histone # # # Binds to proliferation-promoting genes and associates with histone methyltransferase activity that methylates lysine 9 of histone H3. Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. #
UBR2
(details)
21289 ubiquitin protein ligase E3 component n-recognin 2 23304 Q8IWV8 UBR2_HUMAN zf-UBR PF02207 99-167, ClpS PF02617 222-301, domain PF22960 778-872, PRT6_C PF18995 1309-1729 Ubr2 1861099 Q6WKZ8 UBR2_MOUSE UBR Ubiquitin protein ligase E3 component n-recognins Histone modification write Histone ubiquitination # # histone H2A # # Plays a critical role in chromatin inactivation and chromosome-wide transcriptional silencing during meiosis via ubiquitination of histone H2A. (Annotated by similarity.) #
UBR5
(details)
16806 ubiquitin protein ligase E3 component n-recognin 5 51366 O95071 UBR5_HUMAN E3_UbLigase_EDD PF11547 183-228, PABP PF00658 2391-2450, HECT PF00632 2505-2799 Ubr5 1918040 Q80TP3 UBR5_MOUSE UBR Ubiquitin protein ligase E3 component n-recognins Chromatin remodeling, Histone modification write cofactor Histone ubiquitination 22884692 # histone H2A, H2AX H2Aub, H2AXub 22884692 Excessive spreading of a DNA-damage-associated chromatin modification can occur. TRIP12 and UBR5 are two suppressors of such spreading. #
UBR7
(details)
20344 ubiquitin protein ligase E3 component n-recognin 7 (putative) 55148 Q8N806 UBR7_HUMAN zf-UBR PF02207 46-112 Ubr7 1913872 Q8BU04 UBR7_MOUSE UBR Ubiquitin protein ligase E3 component n-recognins DNA modification cofactor DNA methylation 21745816 # DNA # # 21745816 Part of the DNMT1/USP7/UHRF1 complex which increases DNA methylation efficiency. #
UCHL5
(details)
19678 ubiquitin carboxyl-terminal hydrolase L5 51377 Q9Y5K5 UCHL5_HUMAN Peptidase_C12 PF01088 8-209, UCH_C PF18031 265-309 Uchl5 1914848 Q9WUP7 UCHL5_MOUSE INO80 INO80 complex subunits Histone modification erase cofactor Histone ubiquitination 18922472 Ino80 histone # # 18922472 Deubiquitination by Uch37 is activated by proteasomal binding, which enables Uch37 to process polyubiquitin chains. In the nucleus Uch37 is also associated with the human Ino80 chromatin-remodeling complex (hINO80). In hINO80, Uch37 is held in an inactive state; however, it can be activated by transient interaction of the Ino80 complex with the proteasome. #
UHRF1
(details)
12556 ubiquitin-like with PHD and ring finger domains 1 29128 Q96T88 UHRF1_HUMAN ubiquitin PF00240 2-75, TTD PF12148 133-285, PHD PF00628 318-363, SAD_SRA PF02182 417-585 Uhrf1 1338889 Q8VDF2 UHRF1_MOUSE RNF RING-type (C3HC4) zinc fingers Histone modification read, Histone modification write cofactor Histone ubiquitination 17967883 # histone, DNA H3K9me3, H3R2, H3, mCG H3ub 17967883 ICBP90 =UHRF1and its murine homologue Np95 are enriched in pericentric heterochromatin of interphase nuclei, and this localization is dependent on H3K9 methylation. #
UHRF2
(details)
12557 ubiquitin-like with PHD and ring finger domains 2, E3 ubiquitin protein ligase 115426 Q96PU4 UHRF2_HUMAN ubiquitin PF00240 2-74, TTD PF12148 125-311, PHD PF00628 347-392, SAD_SRA PF02182 445-614 Uhrf2 1923718 Q7TMI3 UHRF2_MOUSE RNF, PHF RING-type (C3HC4) zinc fingers, Zinc fingers, PHD-type Histone modification read # 15361834 # histone, DNA H3K9me3, mCG # 15361834 The SRA domain of the murine homologue of ICBP90=UHRF2, Np95, has histone H3-binding activity (Citterio et al., 2004). Methylated DNA twisted around histone H3 might be the primary target for Np95 and ICBP90 in vivo. #
UIMC1
(details)
30298 ubiquitin interaction motif containing 1 51720 Q96RL1 UIMC1_HUMAN RAP80_UIM PF18282 73-125 Uimc1 103185 Q5U5Q9 UIMC1_MOUSE # # Histone modification read # 19015238 BRCA1-A histone H2AK63ub, H2AXK63ub, H2BK63ub # 19015238 The interaction between RAP80 =UIMC1 and ubiquitinated histones H2A and H2B is increased following DNA damage. #
USP11
(details)
12609 ubiquitin specific peptidase 11 8237 P51784 UBP11_HUMAN DUSP PF06337 86-183, Ubiquitin_3 PF14836 199-285, UCH PF00443 309-927, USP7_C2 PF14533 493-596 Usp11 2384312 Q99K46 UBP11_MOUSE USP Ubiquitin-specific peptidases Histone modification erase cofactor Histone ubiquitination 20233726 # histone # # 20233726 USP11 is a chromatin-associated protein and its catalytic activity is required for its genome maintenance activities. USP11 may be a DUB that functions in the DNA damage response to double-strand breaks. #
USP12
(details)
20485 ubiquitin specific peptidase 12 219333 O75317 UBP12_HUMAN UCH PF00443 39-366 Usp12 1270128 Q9D9M2 UBP12_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 22033037 # histone H2Aub H2A 22033037 Involved in H2A deubiquitination. #
USP15
(details)
12613 ubiquitin specific peptidase 15 9958 Q9Y4E8 UBP15_HUMAN DUSP PF06337 27-118, Ubiquitin_3 PF14836 135-221, UCH PF00443 289-930, USP7_C2 PF14533 473-601 Usp15 101857 Q8R5H1 UBP15_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 24526689 # histone H2BK120ub H2BK120 24526689 Enhanced Usp15 binding to ubH2B facilitates deubiquitination of ubH2B in free histones but not in nucleosomes. #
USP16
(details)
12614 ubiquitin specific peptidase 16 10600 Q9Y5T5 UBP16_HUMAN zf-UBP PF02148 47-124, UCH PF00443 197-819 Usp16 1921362 Q99LG0 UBP16_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 10077596 # histone H2Aub H2A 10077596 Recombinant Ubp-M=USP16 is able to deubiquitinate histone H2A in vitro, and the phosphorylated form is also enzymatically active. #
USP17L2
(details)
34434 ubiquitin specific peptidase 17-like family member 2 377630 Q6R6M4 U17L2_HUMAN UCH PF00443 81-372 Usp17le 3643640 Q7M764 U17PE_MOUSE # # Histone modification erase cofactor Histone ubiquitination 21239494 # histone # # 21239494 SDS3 is a key component of the histone deacetylase (HDAC)-dependent Sin3A co-repressor complex, serving to maintain its HDAC activity. Both exogenous and endogenous functional interaction between deubiquitinating enzyme USP17 = USP17L2 and human SDS3 has been reported. #
USP21
(details)
12620 ubiquitin specific peptidase 21 27005 Q9UK80 UBP21_HUMAN UCH PF00443 212-555 Usp21 1353665 Q9QZL6 UBP21_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination # # histone H2Aub H2A # Deubiquitinates histone H2A, a specific tag for epigenetic transcriptional repression, thereby acting as a coactivator. Deubiquitination of histone H2A releaves the repression of di- and trimethylation of histone H3 at 'Lys-4', resulting in regulation of transcriptional initiation. Regulates gene expression via histone H2A deubiquitination. (Annotated by similarity.) #
USP22
(details)
12621 ubiquitin specific peptidase 22 23326 Q9UPT9 UBP22_HUMAN zf-UBP PF02148 63-123, UCH PF00443 176-517 Usp22 2144157 Q5DU02 UBP22_MOUSE USP Ubiquitin-specific peptidases Histone modification write cofactor Histone ubiquitination 18469533 SAGA histone H2Aub, H2Bub H2A, H2B 18469533 USP22 deubiquitylates histone H2A in addition to H2B. This supports a model in which the H2A ubiquitin hydrolase USP22 is coordinately expressed with Polycomb H2A ubiquitin ligases in order that the transcription of certain critical transforming genes be maintained in the face of the global repression mediated by Polycomb. #
USP3
(details)
12626 ubiquitin specific peptidase 3 9960 Q9Y6I4 UBP3_HUMAN zf-UBP PF02148 29-107, UCH PF00443 160-508 Usp3 2152450 Q91W36 UBP3_MOUSE USP Ubiquitin-specific peptidases Histone modification write Histone ubiquitination 17980597 # histone H2Aub, H2Bub H2A, H2B 17980597 The ubiquitin-specific protease 3 USP3 is a deubiquitinating enzyme for uH2A and uH2B. USP3 dynamically associates with chromatin and deubiquitinates H2A/H2B in vivo. #
USP36
(details)
20062 ubiquitin specific peptidase 36 57602 Q9P275 UBP36_HUMAN UCH PF00443 122-421 Usp36 1919594 B1AQJ2 UBP36_MOUSE USP Ubiquitin-specific peptidases Histone modification write cofactor Histone ubiquitination 22622177 # histone H2Bub H2B 22622177 Deubiquitination of histone H2B at the promoters of genes critical for cellular differentiation, thereby preventing histone H3 'Lys-4' trimethylation (H3K4). #
USP44
(details)
20064 ubiquitin specific peptidase 44 84101 Q9H0E7 UBP44_HUMAN zf-UBP PF02148 28-91, UCH PF00443 273-675 Usp44 3045318 Q8C2S0 UBP44_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 22681888 # histone H2Bub1 H2B 22681888 USP44 is most likely an H2Bub1-specific DUB, whose downregulation during ESC differentiation contributes to increased H2Bub1 levels. #
USP46
(details)
20075 ubiquitin specific peptidase 46 64854 P62068 UBP46_HUMAN UCH PF00443 35-362 Usp46 1916977 P62069 UBP46_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 22033037 # histone H2Aub H2A 22033037 Involved in H2A deubiquitination. #
USP49
(details)
20078 ubiquitin specific peptidase 49 25862 Q70CQ1 UBP49_HUMAN zf-UBP PF02148 26-87, UCH PF00443 253-654 Usp49 2685391 Q6P9L4 UBP49_MOUSE USP Ubiquitin-specific peptidases Histone modification erase Histone ubiquitination 23824326 # histone H2Bub H2B 23824326 Ubiquitin-specific peptidase 49 (USP49) is a histone H2B-specific deubiquitinase and shows that H2B deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons. #
USP7
(details)
12630 ubiquitin specific peptidase 7 (herpes virus-associated) 7874 Q93009 UBP7_HUMAN domain PF22486 70-195, UCH PF00443 214-518, USP7_ICP0_bdg PF12436 620-867, USP7_C2 PF14533 877-1086 Usp7 2182061 Q6A4J8 UBP7_MOUSE USP Ubiquitin-specific peptidases Histone modification erase, DNA modification cofactor Histone ubiquitination, DNA methylation 15749019 BCOR histone, DNA H2Bub H2B 15749019 GMP synthetase stimulates histone H2B deubiquitylation by the epigenetic silencer USP7 #
UTY
(details)
12638 ubiquitously transcribed tetratricopeptide repeat containing, Y-linked 7404 O14607 UTY_HUMAN TPR_8 PF13181 202-235, JmjC PF02373 1080-1188, KDM6_C-hel PF21322 1195-1249, KDM6_GATAL PF21326 1267-1327 Uty 894810 P79457 UTY_MOUSE TTC Tetratricopeptide (TTC) repeat domain containing Histone modification erase Histone ubiquitination 24798337 # histone H3K27me # 24798337 The Jumonji C lysine demethylases (KDMs) are 2-oxoglutarate- and Fe(II)-dependent oxygenases. KDM6A (UTX) and KDM6B (JMJD3) are KDM6 subfamily members that catalyze demethylation of Nϵ-methylated histone 3 lysine 27 (H3K27), a mark important for transcriptional repression. Despite reports stating that UTY (KDM6C) is inactive as a KDM, we demonstrate by biochemical studies, employing MS and NMR, that UTY (KDM6C) is an active KDM. Crystallographic analyses reveal that the UTY(KDM6C) active site is highly conserved with those of KDM6B and KDM6A. #
VDR
(details)
12679 vitamin D (1,25- dihydroxyvitamin D3) receptor 7421 P11473 VDR_HUMAN zf-C4 PF00105 23-91, Hormone_recep PF00104 227-403 Vdr 103076 P48281 VDR_MOUSE NR Nuclear hormone receptors Chromatin remodeling cofactor, TF # 16252006 # histone H2BK12ac, H3K14ac, H4K16ac # 16252006 WINAC associates with chromatin through a physical interaction between the WSTF bromodomain and acetylated histones, which appears to be indispensable for VDR/promoter association for ligand-induced transrepression of 1α(OH)ase gene expression. #
VIRMA
(details)
24500 Protein virilizer homolog 25962 Q69YN4 VIR_HUMAN VIR_N PF15912 5-278 Virma 1913435 A2AIV2 VIR_MOUSE ARMH Armadillo like helical domain containing RNA modification RNA methylation 29507755 WMM RNA A of mRNA m6A 29507755 Mediates methylation in 3'UTR and near stop codon New
VPS72
(details)
11644 vacuolar protein sorting 72 homolog (S. cerevisiae) 6944 Q15906 VPS72_HUMAN YL1 PF05764 7-212, YL1_C PF08265 291-319 Vps72 1202305 Q62481 VPS72_MOUSE # # Histone modification write cofactor Histone acetylation 14966270 NuA4, NuA4-related complex chromatin # # 14966270 The YL1 =VPS72 protein is a subunit of the TRRAP/TIP60 HAT complex. The YL1 protein is also present in cells as a subunit of the previously uncharacterized mammalian SRCAP complex, which bears a striking similarity to the S. cerevisiae SWR1 chromatin remodeling complex. #
VRK1
(details)
12718 vaccinia related kinase 1 7443 Q99986 VRK1_HUMAN Pkinase PF00069 39-271 Vrk1 1261847 Q80X41 VRK1_MOUSE # # Histone modification write Histone phosphorylation 22194607 # histone H3S10, H3T3 H3S10ph, H3T3ph # Phosphorylates histones H3-S10, H3-T3. #
WAC
(details)
17327 WW domain containing adaptor with coiled-coil 51322 Q9BTA9 WAC_HUMAN WW PF00397 133-160 Wac 2387357 Q924H7 WAC_MOUSE # # Histone modification write cofactor Histone ubiquitination 21329877 # histone # # # Regulates H2B ubiquitinations. #
WDR5
(details)
12757 WD repeat domain 5 11091 P61964 WDR5_HUMAN WD40 PF00400 38-72 78-115 119-157 161-199 203-242 246-287 292-331 Wdr5 2155884 P61965 WDR5_MOUSE WDR WD repeat domain containing Histone modification read # 16946699 ATAC, NSL, RING2-L3MBTL2, COMPASS, Menin-associated_HMT, MLL-HCF, CHD8, MLL2/3, COMPASS-like MLL1,2, MLL4/WBP7, COMPASS-like MLL3,4 histone H3K4, H3K4me1, H3K4me2, H3K4me3 # 16946699 The WD40 domain of WDR5 represents a new class of histone methyl-lysine recognition domains that is important for recruiting H3K4 methyltransferases to K4-dimethylated histone H3 tail as well as for global and gene-specific K4 trimethylation. Here is given the crystal structures of full-length WDR5, WDR5Delta23 and its complexes with unmodified, mono-, di- and trimethylated histone H3K4 peptides. #
WDR77
(details)
29652 WD repeat domain 77 79084 Q9BQA1 MEP50_HUMAN WD40 PF00400 122-153 160-196 Wdr77 1917715 Q99J09 MEP50_MOUSE WDR WD repeat domain containing Histone modification write Histone methylation 22009756 methylosome histone H2A, H4 H2Ame, H4me # Methylates histones H2A and H4 in Xenopus. #
WDR82
(details)
28826 WD repeat domain 82 80335 Q6UXN9 WDR82_HUMAN WD40 PF00400 15-49 98-135 228-267 Wdr82 1924555 Q8BFQ4 WDR82_MOUSE WDR WD repeat domain containing Histone modification write cofactor Histone methylation 17355966 COMPASS histone # # 17355966 A mammalian Set1A complex analogous to the yeast Set1/COMPASS histone H3-Lys4 methyltransferase complex has previously been identified. WDR82 is a regulatory component of the SET1 complex implicated in the tethering of this complex to transcriptional start sites of active genes. #
WHSC1
(details)
12766 Wolf-Hirschhorn syndrome candidate 1 7468 O96028 NSD2_HUMAN PWWP PF00855 221-299 881-972, HMG_box PF00505 454-505, domain PF23011 668-712 1241-1284, domain PF22908 716-763, domain PF23004 764-816, PHD PF00628 834-872, AWS PF17907 1022-1060, SET PF00856 1073-1180, C5HCH PF17982 1284-1328 Whsc1 1276574 Q8BVE8 NSD2_MOUSE PHF Zinc fingers, PHD-type Histone modification write Histone methylation 18172012 # histone H3K27 H3K27me 18172012 Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity. #
WHSC1L1
(details)
12767 Wolf-Hirschhorn syndrome candidate 1-like 1 54904 Q9BZ95 NSD3_HUMAN PWWP PF00855 269-348 962-1050, domain PF23011 700-746, domain PF22908 749-798, domain PF23004 799-851, AWS PF17907 1104-1142, SET PF00856 1155-1262, C5HCH PF17982 1366-1410 Whsc1l1 2142581 Q6P2L6 NSD3_MOUSE # # Chromatin remodeling cofactor, TF # 16682010 # histone H3K4, H3K27 # 16682010 WHISTLE =WHSC1L1 di-methylates H3K4 and di-, and tri-methylates H3K27 of histones. #
WSB2
(details)
19222 WD repeat and SOCS box containing 2 55884 Q9NYS7 WSB2_HUMAN WD40 PF00400 145-182 188-225 231-267 289-320 338-360, SOCS_box PF07525 367-401 Wsb2 2144041 O54929 WSB2_MOUSE WDR WD repeat domain containing Histone modification write Histone ubiquitination 21070969 # histone # # # May be a substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins, including histones. (Annotated by similarity). #
WTAP
(details)
16846 Pre-mRNA-splicing regulator WTAP (Female-lethal(2)D homolog) (hFL(2)D) (WT1-associated protein) (Wilms tumor 1-associating protein) 9589 Q15007 FL2D_HUMAN Wtap PF17098 68-223 Wtap 1926395 Q9ER69 FL2D_MOUSE # # RNA modification RNA methylation 24407421 WMM RNA A of mRNA m6A 24407421 Regulates recruitment of the m6A methyltransferase complex to mRNA targets New
YAF2
(details)
17363 YY1 associated factor 2 10138 Q8IY57 YAF2_HUMAN zf-RanBP PF00641 20-43, YAF2_RYBP PF17219 104-133 Yaf2 1914307 Q99LW6 YAF2_MOUSE # # Chromatin remodeling cofactor # 11593398 BCOR, RING2-L3MBTL2, RING2-FBRS chromatin # # 11593398 Both Myc and Yaf2 could play a role in chromatin remodeling complexes. #
YEATS2
(details)
25489 YEATS domain containing 2 55689 Q9ULM3 YETS2_HUMAN YEATS PF03366 230-310, domain PF22951 1144-1241 Yeats2 2447762 Q3TUF7 YETS2_MOUSE # # Histone chaperone # 18838386, 29057918 ATAC histone H3K27ac # 18838386, 29057918 A YEATS2-NC2beta histone fold module that interacts with the TATA-binding protein (TBP) and negatively regulates transcription when recruited to a promoter. The p38 kinase-interacting protein (p38IP/FAM48A) is a novel component of STAGA with distant similarity to yeast Spt20.YEATS2 as a histone H3K27ac reader that regulates a transcriptional program essential for NSCLC tumorigenesis. #
YEATS4
(details)
24859 YEATS domain containing 4 8089 O95619 YETS4_HUMAN YEATS PF03366 42-121 Yeats4 1927224 Q9CR11 YETS4_MOUSE # # Histone modification write cofactor Histone acetylation 14966270 NuA4, NuA4-related complex, SRCAP histone # # 14966270 The essential GAS41 =YEATS4 protein is a member of the AF9/ENL-related (YEATS) family, and associated to transcription/chromatin-modifying complexes, including yeast NuA4, NuA3, Sas2, SWI/SNF, TFIID/mediator/TFIIF, and human SWI/SNF complexes. #
YTHDC1
(details)
30626 YTH domain-containing protein 1 (Splicing factor YT521) (YT521-B) 91746 Q96MU7 YTDC1_HUMAN YTH PF04146 355-492 Ythdc1 2443713 E9Q5K9 YTDC1_MOUSE # # RNA modification Alternative splicing 20167602 # RNA mRNA m6A of mRNA 20167602 Regulates splicing site selection of vertabrate-specific exons. New
YWHAB
(details)
12849 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, beta 7529 P31946 1433B_HUMAN 14-3-3 PF00244 11-231 Ywhab 1891917 Q9CQV8 1433B_MOUSE # # Histone modification erase cofactor Histone acetylation 10869435 # histone # # 10869435 Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent (=YWHAB) cellular localization. #
YWHAE
(details)
12851 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon 7531 P62258 1433E_HUMAN 14-3-3 PF00244 10-232 Ywhae 894689 P62259 1433E_MOUSE # # Histone modification erase cofactor Histone acetylation 10869435 # histone # # 10869435 Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent (=YWHAE) cellular localization. #
YWHAZ
(details)
12855 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta 7534 P63104 1433Z_HUMAN 14-3-3 PF00244 9-229 Ywhaz 109484 P63101 1433Z_MOUSE # # Histone modification read # 16246723 # histone H3 # 16246723 14-3-3 =YWHAZ isoforms are proteins that bind modified H3 tail peptide tails in a strictly phosphorylation-dependent manner. #
YY1
(details)
12856 YY1 transcription factor 7528 P25490 TYY1_HUMAN zf-C2H2 PF00096 298-320 325-347 353-377 383-407 Yy1 99150 Q00899 TYY1_MOUSE INO80, ZNF INO80 complex subunits, Zinc fingers, C2H2-type Chromatin remodeling cofactor, TF TF repressor 11445535 Ino80 DNA DNA motif # 11445535 YY1 is complex comprising components of the evolutionarily conserved INO80 chromatin-remodeling complex. #
ZBTB16
(details)
12930 zinc finger and BTB domain containing 16 7704 Q05516 ZBT16_HUMAN BTB PF00651 25-124, zf-C2H2_6 PF13912 461-483 518-540, zf-C2H2 PF00096 490-512 546-568 574-596, domain PF12874 630-652 Zbtb16 103222 # # ZBTB, ZNF, BTBD Zinc fingers, C2H2-type, BTB/POZ domain containing Histone modification erase cofactor Histone acetylation 9627120, 15467736 # histone # # # Recruites SMRT-mSin3-HDAC co-repressor complex. The repressive domains of PLZF function by recruiting N-CoR/Sin3A co-repressor complexes which in turn recruit histone deacetylases (HDACs). #
ZBTB33
(details)
16682 zinc finger and BTB domain containing 33 10009 Q86T24 KAISO_HUMAN BTB PF00651 22-116 Zbtb33 1927290 Q8BN78 KAISO_MOUSE ZBTB, BTBD, ZNF BTB/POZ domain containing, Zinc fingers, C2H2-type Histone modification write cofactor, Histone modification erase cofactor, TF Histone acetylation, Histone methylation, TF repressor 14527417 # DNA CG, mCG, DNA motif # 14527417 Kaiso, a methyl CpG binding protein belonging to the BTB/POZ family of transcription factors, is a component of the human N-CoR complex. In vitro, the Kaiso/N-CoR complex binds specific CpG-rich sequences in a methylation-dependent manner. In vivo, Kaiso targets the N-CoR complex to the MTA2 gene promoter in a methylation-dependent manner. This repression also requires a functional N-CoR deacetylase complex, which brings about histone hypoacetylation and methylation of H3 lysine 9 to the MTA2 locus. #
ZBTB7A
(details)
18078 Zinc finger and BTB domain-containing protein 7A (Factor binding IST protein 1) (FBI-1) (Factor that binds to inducer of short transcripts protein 1) (HIV-1 1st-binding protein 1) (Leukemia/lymphoma-related factor) (POZ and Krueppel erythroid myeloid ontogenic factor) (POK erythroid myeloid ontogenic factor) (Pokemon) (Pokemon 1) (TTF-I-interacting peptide 21) (TIP21) (Zinc finger protein 857A) 51341 O95365 ZBT7A_HUMAN BTB PF00651 24-129, zf-C2H2 PF00096 410-432 438-460 Zbtb7A 1335091 O88939 ZBT7A_MOUSE BTBD BTB domain containing RNA modification Alternative splicing 24514149 # RNA mRNA # 24514149 Regulates alternative splicing of BCL-X and apoptotic factors New
ZBTB7C
(details)
31700 zinc finger and BTB domain containing 7C 201501 A1YPR0 ZBT7C_HUMAN BTB PF00651 24-128, zf-C2H2 PF00096 392-414 448-469 Zbtb7c 2443302 Q8VCZ7 ZBT7C_MOUSE ZBTB, ZNF, BTBD Zinc fingers, C2H2-type, BTB/POZ domain containing Histone modification cofactor # 21804610 # histone # # 21804610 Kr-pok =ZBTB7C competes with MIZ-1 in binding to these elements and represses transcription by inhibiting MIZ-1/p300 recruitment, which decreases the acetylation of histones H3 and H4. #
ZC3H13
(details)
20368 Zinc finger CCCH domain-containing protein 13 23091 Q5T200 ZC3HD_HUMAN zf-CCCH PF00642 40-62 Zc3h13 1914552 E9Q784 ZC3HD_MOUSE ZC3H Zinc fingers CCCH-type RNA modification RNA methylation 29507755 WMM RNA A of mRNA m6A 29507755 Binds WTAP to RBM15 or RBM15B RNA-binding component New
ZCWPW1
(details)
23486 zinc finger, CW type with PWWP domain 1 55063 Q9H0M4 ZCPW1_HUMAN zf-CW PF07496 256-302, PWWP PF00855 318-412 Zcwpw1 2685899 Q6IR42 ZCPW1_MOUSE # # Histone modification read # 21423274 # histone H3K4me # 21423274 Table 1 in the reference. #
ZFP57
(details)
18791 ZFP57 zinc finger protein 346171 Q9NU63 ZFP57_HUMAN KRAB PF01352 16-56, zf-C2H2 PF00096 91-113 119-141 147-169 175-197 300-322 328-350 Zfp57 99204 Q8C6P8 ZFP57_MOUSE # # TF TF repressor # # DNA mC, DNA motif # # Acts by controlling DNA methylation during the earliest multicellular stages of development at multiple imprinting control regions. (UniProt) #
ZGPAT
(details)
15948 zinc finger, CCCH-type with G patch domain 84619 Q8N5A5 ZGPAT_HUMAN zf-CCCH_4 PF18044 177-199, G-patch PF01585 333-376 Zgpat 2449939 Q8VDM1 ZGPAT_MOUSE ZC3H, GPATCH Zinc fingers, CCCH-type domain containing, "G patch domain containing" TF TF repressor 22498752 # DNA DNA motif # # Recruits the chromatin multiprotein complex NuRD to target promoters. #
ZHX1
(details)
12871 zinc fingers and homeoboxes 1 11244 Q9UKY1 ZHX1_HUMAN zf_C2H2_ZHX PF18387 99-151, Homeodomain PF00046 299-340 469-521 575-622 666-717, Homez PF11569 784-822 Zhx1 109271 P70121 ZHX1_MOUSE ZNF, ZFHX Zinc fingers, C2H2-type, Homeoboxes / ZF class Chromatin remodeling, Histone modification write cofactor Histone acetylation, Histone methylation 17303076 # histone # # 17303076 Presence of a PWWP domain is required for interaction of ZHX1. This domain may function as a site of protein–protein interaction and influence chromatin remodeling, and thereby facilitate the fine tuning of transcriptional processes. #
ZMYM2
(details)
12989 zinc finger, MYM-type 2 7750 Q9UBW7 ZMYM2_HUMAN zf-FCS PF06467 328-364 371-412 422-457 465-504 534-571 637-674 681-716 725-762 766-803, DUF3504 PF12012 1190-1359 Zmym2 1923257 Q9CU65 ZMYM2_MOUSE ZMYM Zinc fingers, MYM type Histone modification erase cofactor, TF Histone acetylation 12493763 BHC, LSD-CoREST DNA DNA motif # 12493763 A family of HDAC1,2-associated complexes includes proteins with a putative role in DNA binding such as ZNF261/XFIM (=ZMYM3), ZNF198/FIM (=ZMYM2), and ZNF217. #
ZMYM3
(details)
13054 zinc finger, MYM-type 3 9203 Q14202 ZMYM3_HUMAN zf-FCS PF06467 353-389 406-444 449-490 497-535 546-580 591-624 632-664 676-714 718-754, DUF3504 PF12012 1184-1354 Zmym3 1927231 Q9JLM4 ZMYM3_MOUSE ZMYM Zinc fingers, MYM type Histone modification erase cofactor Histone acetylation 12493763 BHC DNA # # 12493763 A family of HDAC1,2-associated complexes includes proteins with a putative role in DNA binding such as ZNF261/XFIM (=ZMYM3), ZNF198/FIM (=ZMYM2), and ZNF217. #
ZMYND11
(details)
16966 zinc finger, MYND-type containing 11 10771 Q15326 ZMY11_HUMAN SAMD1_WH PF21524 18-68, Bromodomain PF00439 184-241, PWWP PF00855 281-351 Zmynd11 1913755 Q8R5C8 ZMY11_MOUSE ZMYND Zinc fingers, MYND-type Histone modification read Histone methylation 22498752 # histone H3.3K36me3 # # ZMYND11 recognizes and binds histone H3.3 trimethylated at Lys-36 (H3.3K36me3), according to UniProt. #
ZMYND8
(details)
9397 zinc finger, MYND-type containing 8 23613 Q9ULU4 PKCB1_HUMAN PHD PF00628 91-130, Bromodomain PF00439 165-239, PWWP PF00855 280-348, DUF3544 PF12064 412-608 Zmynd8 1918025 # # ZMYND, PHF Zinc fingers, MYND-type, "Zinc fingers, PHD-type" Histone modification erase cofactor Histone acetylation 25123934 # histone # # # ZMYND8 is part of the NuRD complex. #
ZNF217
(details)
13009 zinc finger protein 217 7764 O75362 ZN217_HUMAN zf-C2H2 PF00096 128-150 156-178 377-397 472-493 # # # # ZNF Zinc fingers, C2H2-type Histone modification erase cofactor, TF Histone acetylation, TF repressor 12493763 BHC, LSD-CoREST DNA # # 12493763 A family of HDAC1,2-associated complexes includes proteins with a putative role in DNA binding such as ZNF261/XFIM (=ZMYM3), ZNF198/FIM (=ZMYM2), and ZNF217. #
ZNF516
(details)
28990 zinc finger protein 516 9658 Q92618 ZN516_HUMAN zf-C2H2 PF00096 34-56 62-84 248-270 276-298 1098-1120 Zfp516 2443957 Q7TSH3 ZN516_MOUSE ZNF Zinc fingers, C2H2-type Histone modification erase cofactor, TF Histone acetylation, TF repressor 23752268 LSD-CoREST histone, DNA # # 23752268 Part of the HDAC interactome, TF annotation from Uniprot. #
ZNF532
(details)
30940 zinc finger protein 532 55205 Q9HCE3 ZN532_HUMAN zf-C2H2_11 PF16622 1203-1226, zf-C2H2_6 PF13912 1264-1286 Zfp532 3036282 Q6NXK2 ZN532_MOUSE ZNF Zinc fingers, C2H2-type Histone modification erase cofactor Histone acetylation 25123934 # histone # # # A member of NuRD complex. #
ZNF541
(details)
25294 zinc finger protein 541 84215 Q9H0D2 ZN541_HUMAN zf-C2H2 PF00096 140-162, zf-C2H2_6 PF13912 168-190 1289-1312, ELM2 PF01448 1055-1111 Zfp541 3647699 Q0GGX2 ZN541_MOUSE ZNF Zinc fingers, C2H2-type Chromatin remodeling # 18849567 # chromatin # # # Forms a complex with chromatin remodeling activity during spermatogenesis. UniProt: Component of some chromatin remodeling multiprotein complex that plays a role during spermatogenesis (by similarity). #
ZNF592
(details)
28986 zinc finger protein 592 9640 Q92610 ZN592_HUMAN zf-C2H2_11 PF16622 1153-1176 Zfp592 2443541 Q8BHZ4 ZN592_MOUSE ZNF Zinc fingers, C2H2-type Histone modification erase cofactor Histone acetylation 25123934 # histone # # # A member of NuRD complex. #
ZNF687
(details)
29277 zinc finger protein 687 57592 Q8N1G0 ZN687_HUMAN zf-C2H2 PF00096 993-1016 1200-1222, zf-C2H2_11 PF16622 1135-1158 Zfp687 1925516 Q9D2D7 ZN687_MOUSE # # Histone modification erase cofactor Histone acetylation 25123934 # histone # # # A member of NuRD complex. #
ZNF711
(details)
13128 zinc finger protein 711 7552 Q9Y462 ZN711_HUMAN Zfx_Zfy_act PF04704 62-356, zf-C2H2 PF00096 383-405 505-527 562-584 590-613 619-641 676-698 704-727 733-755 Zfp711 3045342 A2ANX9 ZN711_MOUSE ZNF Zinc fingers, C2H2-type Histone modification erase cofactor Histone acetylation 20346720 # histone # # 20346720 The PHD domain of PHF8 binds to H3K4me3 and colocalizes with H3K4me3 at transcription initiation sites. Furthermore, PHF8 interacts with another XMLR protein, ZNF711, which binds to a subset of PHF8 target genes, including the XLMR gene JARID1C. #
ZNHIT1
(details)
21688 zinc finger, HIT-type containing 1 10467 O43257 ZNHI1_HUMAN zf-HIT PF04438 113-141 Znhit1 1917353 Q8R331 ZNHI1_MOUSE ZNHIT Zinc fingers, HIT-type Chromatin remodeling cofactor, Histone modification erase cofactor Histone acetylation 15647280 SRCAP histone # # 15647280 YL1 protein is also present in cells as a subunit of the previously uncharacterized mammalian SRCAP complex, which bears a striking similarity to the recently described S. cerevisiae SWR1 chromatin remodeling complex and is composed of the SNF2-related SRCAP helicase, ARP6, ZnF/HIT1. #
ZRANB3
(details)
25249 zinc finger, RAN-binding domain containing 3 84083 Q5FWF4 ZRAB3_HUMAN SNF2-rel_dom PF00176 40-299, Helicase_C PF00271 329-435, zf-RanBP PF00641 623-648, HNH PF01844 1014-1049 Zranb3 1918362 Q6NZP1 ZRAB3_MOUSE ZRANB Zinc fingers, RAN-binding domain containing Chromatin remodeling, Histone modification read cofactor Histone methylation 22705370 # histone # # 22705370 All four proteins (HARP, HARP-like domain (HPL), SMARCA1, RAD54L) belong to the SNF2 =ZRANB3 family, whose members participate in a variety of processes including chromatin remodeling, transcription, DNA repair, and recombination. #
ZZZ3
(details)
24523 zinc finger, ZZ-type containing 3 26009 Q8IYH5 ZZZ3_HUMAN Myb_DNA-binding PF00249 655-703, ZZ PF00569 818-865 Zzz3 1920453 Q6KAQ7 ZZZ3_MOUSE ZZZ Zinc fingers, ZZ-type Histone modification read # 19103755 ATAC histone # # 19103755 The SANT domain of c-Myb has been shown to bind histone H3 tails and position them for acetylation (35). Moreover, the SANT domains in ADA2a and ZZZ3/ATAC1 might enable the complex to associate with nucleosome tails in order to potentiate the catalytic activities of GCN5 and ATAC2, similar to what has been shown for the SANT domains in yeast Ada2 and Swi3. #